TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Crookston, B. M. A1 - Matos, J. ED - Crookston, B. ED - Tullis, B. T1 - Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways BT - Session 1: Hydraulic structures T2 - Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016 Y1 - 2016 SN - 978-1-884575-75-4 U6 - http://dx.doi.org/10.15142/T340628160853 SP - 635 EP - 646 ER - TY - CHAP A1 - Kerpen, Nils B. A1 - Bung, Daniel B. A1 - Valero, Daniel A1 - Schlurmann, Torsten T1 - Energy dissipation within the wave run-up at stepped revetments T2 - 8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China KW - energy disspation KW - wave run-up KW - friction Y1 - 2016 ER - TY - JOUR A1 - Kerpen, Nils B. A1 - Bung, Daniel B. A1 - Valero, Daniel A1 - Schlurmann, Torsten T1 - Energy dissipation within the wave run-up at stepped revetments JF - Journal of Ocean University of China Y1 - 2017 U6 - http://dx.doi.org/10.1007/s11802-017-3355-z SN - 1993-5021 VL - 16 IS - 4 SP - 649 EP - 654 PB - Springer CY - Berlin ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Crookston, B.M. T1 - Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways JF - Journal of Hydraulic Engineering N2 - New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin’s performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein. Y1 - 2018 U6 - http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001482 SN - 0733-9429 N1 - Article number 04018036 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER - TY - CHAP A1 - Kerpen, Nils B. A1 - Schoonees, Talia A1 - Schlurmann, Torsten A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - waveSTEPS – Wellenauf- und Wellenüberlauf an getreppten Deckwerken T2 - 24. KFKI-Seminar 2019, 21.11.2019 Y1 - 2019 ER - TY - CHAP A1 - Valero, Daniel A1 - Vogel, Jochen A1 - Schmidt, Daniel A1 - Bung, Daniel B. T1 - Three-dimensional flow structure inside the cavity of a non-aerated stepped chute T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - http://dx.doi.org/10.15142/T3GH17 ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Hybrid investigation of air transport processes in moderately sloped stepped spillway flows T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 10 ER - TY - CHAP A1 - Bung, Daniel B. A1 - Valero, Daniel T1 - Image processing for bubble image velocimetry in self-aerated flows T2 - E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Bung, Daniel B. A1 - Valero, Daniel ED - Crookston, B. ED - Tullis, B. T1 - Application of the optical flow method to velocity determination in hydraulic structure models BT - Session 11: Fish passage and shiplocks T2 - Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016 Y1 - 2016 SN - 978-1-884575-75-4 U6 - http://dx.doi.org/10.15142/T3150628160853 SP - 223 EP - 232 ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow JF - Environmental Modelling and Software N2 - Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.envsoft.2016.04.030 SN - 1364-8152 (electronic) VL - 82 SP - 218 EP - 228 PB - Elsevier CY - Amsterdam ER -