TY - JOUR A1 - Baringhaus, Ludwig A1 - Gaigall, Daniel T1 - On an asymptotic relative efficiency concept based on expected volumes of confidence regions JF - Statistics - A Journal of Theoretical and Applied Statistic N2 - The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting. KW - Volume of confidence regions KW - asymptotic relative efficiency KW - likelihood ratio test KW - multivariate normal distribution KW - multinomial distribution Y1 - 2019 U6 - http://dx.doi.org/10.1080/02331888.2019.1683560 SN - 1029-4910 VL - 53 IS - 6 SP - 1396 EP - 1436 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Gaigall, Daniel T1 - On a new approach to the multi-sample goodness-of-fit problem JF - Communications in Statistics - Simulation and Computation N2 - Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions. KW - Goodness-of-fit test KW - Multi-sample problem KW - Parametric bootstrap Y1 - 2019 U6 - http://dx.doi.org/10.1080/03610918.2019.1618472 SN - 1532-4141 VL - 53 IS - 10 SP - 2971 EP - 2989 PB - Taylor & Francis CY - London ER -