TY - CHAP A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192 T2 - 2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum Y1 - 2018 U6 - https://doi.org/10.2514/6.2018-3192 SN - 1533-385X N1 - AIAA 2018-3192 SP - Article 3192 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane N2 - This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4. Y1 - 2020 U6 - https://doi.org/10.25967/530170 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online PB - DGLR CY - Bonn ER - TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 N2 - This paper presents an approach for UAV propulsion system qualification and validation on the example of FH Aachen's 25 kg cargo UAV "PhoenAIX". Thrust and power consumption are the most important aspects of a propulsion system's layout. In the initial design phase, manufacturers' data has to be trusted, but the validation of components is an essential step in the design process. This process is presented in this paper. The vertical takeoff system is designed for efficient hover; therefore, performance under static conditions is paramount. Because an octo-copter layout with coaxial rotors is considered, the impact of this design choice is analyzed. Data on thrust, voltage stability, power consumption, rotational speed, and temperature development of motors and controllers are presented for different rotors. The fixed-wing propulsion system is designed for efficient cruise flight. At the same time, a certain static thrust has to be provided, as the aircraft needs to accelerate to cruise speed. As for the hover-system, data on different propellers is compared. The measurements were taken for static conditions, as well as for different inflow velocities, using the FH-Aachen's wind-tunnel. Y1 - 2020 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization T2 - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. Y1 - 2020 U6 - https://doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online VL - 12 SP - 589 EP - 603 PB - Springer CY - Wien ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - A highly automated method for simulating airfoil characteristics at low Reynolds number using a RANS - transition approach T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany Y1 - 2019 U6 - https://doi.org/10.25967/490026 SP - 1 EP - 14 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 U6 - https://doi.org/10.25967/490012 SP - 1 EP - 17 ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix T1 - Conceptual Design of a Modular 150 kg Vertical Take-off and Landing Unmanned Aerial Vehicle T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany Y1 - 2019 SP - 1 EP - 10 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 SP - 1 EP - 13 ER -