TY - CHAP A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Nojima, H. T1 - Plasma cluster ions (PCI) influence on microbial cells viability : [abstract] N2 - Recently, SHARP corporation has developed the world’s first “Plasma Cluster Ions (PCI)” air purification technology, which uses plasma discharge to generate cluster ions. The new plasma cluster device releases into the air positive and negative ions, which are harmless to humans and are able to decompose and deactivate airborne substances by chemical reactions. A lot of phenomenological tests of the PCI air purification technology on microbial cells have been conducted. And, in most cases, it has been shown that PCI demonstrate strongly pronounced killing effect. Although, the particular mechanisms of PCI action are still not evident. We studied variations in resistance to PCI among gram-positive airborne microorganisms, as well as some dose-dependent, spatial, cultural and biochemical properties of PCI action in respect of Staphylococcus spp, Enterococcus spp, Micrococcus spp. KW - Clusterion KW - Raumluft KW - Luftreiniger KW - Plasmacluster ion technology KW - Air purification Y1 - 2003 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. A1 - Artmann, Gerhard T1 - Cluster air-ion effects on bacteria and moulds JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1040 EP - 1041 ER - TY - CHAP A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nojima, H. A1 - Artmann, Gerhard T1 - Effects of plasma generated ions on bacteria : [poster] N2 - Summary and Conclusions PCIs were clearly effective in terms of their antibacterial effects with the strains tested. This efficacy increased with the time the bacteries were exposed to PCIs. The bactericidal action has proved to be irreversible. PCIs were significantly less effective in shadowed areas. PCI exposure caused multiple protein damages as observed in SDS PAGE studies. There was no single but multiple molecular mechanism causing the bacterial death. KW - Clusterion KW - Bakterien KW - plasma generated ions Y1 - 2003 ER - TY - CHAP A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nojima, H. A1 - Artmann, Gerhard T1 - Some peculiarities of application of cluster ions generated by plasma in respect of indoor air purification :[abstract] N2 - Recently, the SHARP Corporation, Japan, has developed the world’s first "Plasma Cluster Ions (PCI)" air purification technology using plasma discharge to generate cluster ions. The new plasma cluster device releases positive and negative ions into the air, which are able to decompose and deactivate harmful airborne substances by chemical reactions. Because cluster ions consist of positive and negative ions that normally exist in the natural world, they are completely harmless and safe to humans. The amount of ozone generated by cluster ions is less than 0.01 ppm, which is significantly less than the 0.05-ppm standard for industrial operations and consumer electronics. This amount, thus, has no harming effects whatsoever on the human body. But particular properties and chemical processes in PCI treatment are still under study. It has been shown that PCI in most cases show strongly pronounced irreversible killing effects in respect of airborne microflora due to free-radical induced reactions and can be considered as a potent technology to disinfect both home, medical and industrial appliances. KW - Clusterion KW - Raumluft KW - Luftreiniger KW - Plasmacluster ion technology KW - Air purification Y1 - 2003 ER - TY - CHAP A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nojima, H. A1 - Artmann, Gerhard T1 - Plasma-generated cluster ions' effects on indoor microflora : [abstract] N2 - Recently, SHARP corporation has developed the world’s first "Plasma Cluster Ions® (PCI)" air purification technology, which uses plasma discharge to generate cluster ions. The new Plasma Cluster Device releases positive and negative ions into the air, which are harmless to humans and are able to decompose and deactivate airborne substances by chemical reactions. In the past, phenomenological tests on the efficacy of the PCI air purification technology on microbial cells have been conducted. In most cases, it has been shown that PCI demonstrated strongly pronounced killing effects on microorganisms. However, the particular mechanisms of PCI action still have to be uncovered. KW - Clusterion KW - Raumluft KW - Luftreiniger KW - Plasmacluster ion technology KW - Air purification Y1 - 2003 ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - JOUR A1 - Goßmann, Matthias A1 - Frotscher, Ralf A1 - Linder, Peter A1 - Bayer, Robin A1 - Epple, U. A1 - Staat, Manfred A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells JF - Cellular physiology and biochemistry N2 - Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential. KW - Inotropic compounds KW - Pharmacology KW - Ion channels KW - CellDrum KW - Heart tissue culture KW - Induced pluripotent stem cells KW - Cardiac myocytes Y1 - 2016 U6 - http://dx.doi.org/10.1159/000443124 SN - 1421-9778 (Online) SN - 1015-8987 (Print) VL - 38 IS - 3 SP - 1182 EP - 1198 PB - Karger CY - Basel ER - TY - JOUR A1 - Kozhalakova, A. A. A1 - Zhubanova, Azhar A. A1 - Mansurov, Z. A. A1 - Digel, Ilya A1 - Tazhibayeva, S. M. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial lipopolysaccharides on carbonized rice shell JF - Science of Central Asia (2010) Y1 - 2010 SP - 50 EP - 54 ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, T. A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Karakulah, G. A1 - Artmann, Gerhard A1 - Sakizli, M. A1 - Temiz Artmann, Aysegül T1 - Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation JF - Cellular and molecular bioengineering. 4 (2011), H. 1 Y1 - 2011 SN - 1865-5025 SP - 46 EP - 55 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER -