TY - JOUR A1 - Stadler, Alexander Maximilian A1 - Garvey, Christopher J. A1 - Embs, Jan Peter A1 - Koza, Michael Marek A1 - Unruh, Tobias A1 - Artmann, Gerhard A1 - Zaccai, Guiseppe T1 - Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study JF - Biochimica et biophysica acta (BBA): General Subjects Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.bbagen.2014.06.007 SN - 1872-8006 (E-Journal); 0304-4165 (Print) VL - 1840 IS - 10 SP - 2989 EP - 2999 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schlemmer, Katharina A1 - Porst, Dariusz A1 - Bassam, Rasha A1 - Artmann, Gerhard A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - http://dx.doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 100 EP - 101 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - PAT A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Bayer, Robin A1 - Gossmann, Matthias T1 - Celldrum electrode arrangement for measuring mechanical stress [Patent of invention] N2 - The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance. Y1 - 2017 N1 - Patent auch unter EP3403090, CN109477828, US2019033245 und LU92948 veröffentlicht. PB - WIPO CY - Geneva ER - TY - CHAP A1 - Azat, Seitkhan A1 - Kerimkulova, Almagul R. A1 - Mansurov, Zulkhair A. A1 - Adekenov, Sergazy A1 - Artmann, Gerhard T1 - The Use of Fusicoccin as Anticancer Compound T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The problem of creation and use of sorption materials is of current interest for the practice of the modern medicine and agriculture. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is known that a plant phytohormone—fusicoccin—in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccin from extract of germinated wheat seeds. According to the results of computer modeling, cleaning composite components of fusicoccin using microporous carbon adsorbents not suitable as the size of the molecule of fusicoccin more than micropores and the optimum pore size for purification of constituents of fusicoccin was determined by computer simulation. Y1 - 2020 SN - 978-0-429-42864-7 U6 - http://dx.doi.org/10.1201/9780429428647-8 SP - 149 EP - 172 PB - Jenny Stanford Publishing CY - New York ER -