TY - JOUR A1 - Karschuck, Tobias A1 - Kaulen, Corinna A1 - Poghossian, Arshak A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules JF - Electrochemical Science Advances N2 - The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies. KW - polystyrene sulfonate KW - gold nanoparticles KW - field-effect sensor KW - detection of charged macromolecules KW - capacitive EIS sensor Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100179 SN - 0938-5193 VL - 2 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gun, Jenny A1 - Gutkin, Vitaly A1 - Lev, Ovadia A1 - Boyen, Hans-Gerd A1 - Saitner, Marc A1 - Wagner, Patrick A1 - Olieslaeger, Marc D´ A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices JF - Journal of Physical Chemistry C. 115 (2011), H. 11 Y1 - 2011 SN - 1932-7455 SP - 4439 EP - 4445 PB - American Cemical Society CY - Washington, DC ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 77 EP - 81 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Christiaens, P. A1 - Williams, O. A. A1 - Haenen, K. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Nanocrystalline diamond-based field-effect (bio-)chemical sensor JF - 8. Dresdner Sensor-Symposium : Sensoren für Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme für die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung für die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.) Y1 - 2007 SN - 978-3-940046-45-1 N1 - Dresdner Sensor-Symposium <8, 2007, Dresden> ; Dresdner Beiträge zur Sensorik ; 29 SP - 191 EP - 194 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - JOUR A1 - Murib, M. S. A1 - Yeap, W. S. A1 - Eurlings, Y. A1 - Grinsven, B. van A1 - Boyen, H.-G. A1 - Conings, B. A1 - Michiels, L. A1 - Ameloot, M. A1 - Carleer, R. A1 - Warmer, J. A1 - Kaul, P. A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Ceuninck, W. de A1 - Wagner, P. T1 - Heat-transfer based characterization of DNA on synthetic sapphire chips JF - Sensors and Actuators B: Chemical N2 - In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material. Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.02.027 SN - 0925-4005 VL - 230 IS - 230 SP - 260 EP - 271 PB - Elsevier CY - Amsterdam ER -