TY - JOUR A1 - Arinkin, Vladimir A1 - Digel, Ilya A1 - Porst, Dariusz A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application JF - BMC bioinformatics N2 - Background True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with technical/optical methods and artificial neural networks (ANN). Results Fluorescence microscopy images of leaflet cross sections have been taken from a set of five date palm tree cultivars (Hewlat al Jouf, Khlas, Nabot Soltan, Shishi, Um Raheem). After features extraction from images, the obtained data have been fed in a multilayer perceptron ANN with backpropagation learning algorithm. Conclusions Overall, an accurate result in prediction and differentiation of date palm tree cultivars was achieved with average prediction in tenfold cross-validation is 89.1% and reached 100% in one of the best ANN. Y1 - 2014 U6 - https://doi.org/10.1186/1471-2105-15-55 SN - 1471-2105 VL - 15 IS - 55 SP - 1 EP - 8 ER - TY - JOUR A1 - Preiß, C. A1 - Linder, Peter A1 - Wendt, K. A1 - Krystek, M. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Bassam, Rasha A1 - Artmann, Gerhard T1 - Engineering technology for plant physiology and plant stress research N2 - Plant physiology and plant stress: Plant physiology will be much more important for human mankind because of yield and cultivation limits of crops determined by their resistance to stress. To assess and counteract various stress factors it is necessary to conduct plant research to gain information and results on plant physiology. KW - Pflanzenphysiologie KW - Pflanzenstress KW - Pflanzenscanner KW - plant stress KW - plant scanner Y1 - 2011 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Digel, Ilya A1 - Zerlin, Kay A1 - Maggakis-Kelemen, Christina A1 - Linder, Peter A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Stadler, David A1 - Dikta, Gerhard A1 - Temiz Artmann, Aysegül T1 - Hemoglobin senses body temperature JF - European Biophysics Journal Y1 - 2009 SN - 0175-7571 VL - 38 IS - 5 SP - 589 EP - 600 ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sadykov, Rustam A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Linder, Peter A1 - Kayser, Peter A1 - Artmann, Gerhard A1 - Savitskaya, Irina A1 - Zhubanova, Azhar T1 - Oral lead exposure induces dysbacteriosis in rats JF - Journal of Occupational Health. 51 (2009) (2009), H. 1 Y1 - 2009 SN - 1348-9585 SP - 64 EP - 73 ER - TY - JOUR A1 - Trzewik, Jürgen A1 - Temiz Artmann, Aysegül A1 - Linder, Peter A1 - Demirci, T. A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Evaluation of lateral mechanical tension in thin-film tissue constructs JF - Annals of Biomedical Engineering. 32 (2004), H. 9 Y1 - 2004 SN - 1573-9686 SP - 1243 EP - 1251 ER - TY - JOUR A1 - Kurz, R. A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Rüffer, M. A1 - Artmann, Gerhard A1 - Digel, Ilya A1 - Rothermel, A. A1 - Robitzki, A. A1 - Temiz Artmann, Aysegül T1 - Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes JF - Medical and Biological Engineering and Computing N2 - The CellDrum technology (The term 'CellDrum technology' includes a couple of slightly different technological setups for measuring lateral mechanical tension in various types of cell monolayers or 3D-tissue constructs) was designed to quantify the contraction rate and mechanical tension of self-exciting cardiac myocytes. Cells were grown either within flexible, circular collagen gels or as monolayer on top of respective 1-mum thin silicone membranes. Membrane and cells were bulged outwards by air pressure. This biaxial strain distribution is rather similar the beating, blood-filled heart. The setup allowed presetting the mechanical residual stress level externally by adjusting the centre deflection, thus, mimicking hypertension in vitro. Tension was measured as oscillating differential pressure change between chamber and environment. A 0.5-mm thick collagen-cardiac myocyte tissue construct induced after 2 days of culturing (initial cell density 2 x 10(4) cells/ml), a mechanical tension of 1.62 +/- 0.17 microN/mm(2). Mechanical load is an important growth regulator in the developing heart, and the orientation and alignment of cardiomyocytes is stress sensitive. Therefore, it was necessary to develop the CellDrum technology with its biaxial stress-strain distribution and defined mechanical boundary conditions. Cells were exposed to strain in two directions, radially and circumferentially, which is similar to biaxial loading in real heart tissues. Thus, from a biomechanical point of view, the system is preferable to previous setups based on uniaxial stretching. Y1 - 2010 U6 - https://doi.org/10.1007/s11517-009-0552-y SN - 1741-0444 VL - 48 IS - 1 SP - 59 EP - 65 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - https://doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Demirci, T. A1 - Trzewik, J. A1 - Linder, Peter A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: ITGB5 and p53 Responses as Quantified on the mRNA Level JF - Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1030 EP - 1031 ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Zerlin, Kay A1 - Digel, Ilya A1 - Büldt, Georg A1 - Zaccai, Guiseppe A1 - Artmann, Gerhard T1 - Dynamics and interactions of hemoglobin in red blood cells JF - Tissue Engineering Part A. 14 (2008), H. 5 Y1 - 2008 SN - 1937-3341 N1 - TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal SP - 724 EP - 724 ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, K. T. A1 - Zhubanova, A. A. T1 - Biocompatibility of carbonized rice husk with a rat heart cells line H9c2 JF - Experimental Biology Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 59 IS - 3/1 SP - 23 EP - 25 ER - TY - JOUR A1 - Sagymbay, Altynay A1 - G.E., Nusupbaeva A1 - N.Zh, Tleumbetova A1 - A.S., Mutalieva A1 - Nurpeisova, Ainur A1 - D.B., Jussupova A1 - Digel, Ilya T1 - Molecular genetics features of the epidemic season 2017-2018 on the influenza in Kazakhstan JF - Eurasian Journal of Ecology Y1 - 2019 SN - 2617-7358 VL - 58 IS - 1 SP - 50 EP - 60 ER - TY - JOUR A1 - Digel, Ilya A1 - Zerlin, Kay A1 - Temiz Artmann, Aysegül A1 - Engels, S. T1 - Protein dynamics in thermosensation JF - Regenerative medicine. 2 (2007), H. 5 Y1 - 2007 SN - 1746-0751 N1 - Proceedings of the 3rd World Congress on Regenerative Medicine. October 18-20, 2007. Leipzig, Germany SP - 533 EP - 533 ER - TY - JOUR A1 - Savitskaya, I.S. A1 - Kistaubayeva, A.S. A1 - Ignatova, L.V. A1 - Digel, Ilya T1 - Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells JF - Heliyon Y1 - 2019 U6 - https://doi.org/10.1016/j.heliyon.2019.e02592 SN - 2405-8440 VL - 5 IS - 10 SP - Artikelnummer e02592 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stadler, A. M. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Embs, Jan P. A1 - Zaccai, Joe A1 - Büldt, Georg T1 - Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature JF - Biophysical Journal. 95 (2008), H. 11 Y1 - 2008 SN - 1542-0086 SP - 5449 EP - 5461 ER - TY - JOUR A1 - Digel, Ilya A1 - Wehlitz, V. A1 - Kayser, Peter A1 - Figiel-Lange, A. A1 - Bassam, R. A1 - Rundstedt, F. von T1 - Suspension depletion approach for exemption of infected Solanum jasminoides cells from pospiviroids JF - Plant Pathology N2 - Despite numerous studies, viroid elimination from infected plants remains a very challenging task. This study introduces for the first time a novel ‘suspension depletion’ approach for exemption of Solanum jasminoides plants from viroids. The proposed method implies initial establishment of suspension cultures of the infected plant cells. The suspended cells were then physically treated (mild thermotherapy, 33 °C), which presumably delayed the replication of the viroid. The viroid concentration in the treated biomass was monitored weekly using pospiviroid-specific PCR. After 10–12 weeks of continuous treatment, a sufficient decrease in viroid concentration was observed such that the infection became undetectable by PCR. The treated single cells then gave rise to microcolonies on a solid culture medium and the obtained viroid-negative clones were further promoted to regenerate into viroid-free plants. Three years of accumulated experimental data suggests feasibility, broad applicability, and good efficacy of the proposed approach. Y1 - 2018 U6 - https://doi.org/10.1111/ppa.12750 SN - 1365-3059 VL - 67 IS - 2 SP - 358 EP - 365 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Bassam, Rasha A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Digel, Ilya T1 - Effects of spermine NONOate and ATP on the thermal stability of hemoglobin JF - BMC Biophysics N2 - Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell. KW - Nitric Oxide Donor KW - NONOate KW - Circular Dichroism KW - Nitric Oxide Y1 - 2012 U6 - https://doi.org/10.1186/2046-1682-5-16 SN - 2046-1682 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Mansurov, Z. A1 - Digel, Ilya A1 - Biisenbaev, M. A1 - Savistkaya, I. A1 - Kistaubaeva, A. A1 - Akimbekov, Nuraly S. A1 - Zhubanova, A. T1 - Bio-composite material on the basis of carbonized rice husk in biomedicine and environmental applications JF - Eurasian Chemico-Technological Journal Y1 - 2012 U6 - https://doi.org/10.18321/ectj105 SN - 2522-4867 VL - 14 IS - 2 SP - 115 EP - 131 PB - Institute of Combustion Problems CY - Almaty ER -