TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Digel, Ilya A1 - Akimbekov, Nuraly S. A1 - Kistaubayeva, Aida A1 - Zhubanova, Azhar A. ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Microbial Sampling from Dry Surfaces: Current Challenges and Solutions T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms’ recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling. KW - Sampling methods KW - Surface microorganisms KW - Dry surfaces KW - Microbial adhesion KW - Swabbing Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_19 SP - 421 EP - 456 PB - Springer CY - Singapore ER - TY - JOUR A1 - Stadler, A. M. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Embs, Jan P. A1 - Zaccai, Joe A1 - Büldt, Georg T1 - Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature JF - Biophysical Journal. 95 (2008), H. 11 Y1 - 2008 SN - 1542-0086 SP - 5449 EP - 5461 ER - TY - JOUR A1 - Digel, Ilya A1 - Wehlitz, V. A1 - Kayser, Peter A1 - Figiel-Lange, A. A1 - Bassam, R. A1 - Rundstedt, F. von T1 - Suspension depletion approach for exemption of infected Solanum jasminoides cells from pospiviroids JF - Plant Pathology N2 - Despite numerous studies, viroid elimination from infected plants remains a very challenging task. This study introduces for the first time a novel ‘suspension depletion’ approach for exemption of Solanum jasminoides plants from viroids. The proposed method implies initial establishment of suspension cultures of the infected plant cells. The suspended cells were then physically treated (mild thermotherapy, 33 °C), which presumably delayed the replication of the viroid. The viroid concentration in the treated biomass was monitored weekly using pospiviroid-specific PCR. After 10–12 weeks of continuous treatment, a sufficient decrease in viroid concentration was observed such that the infection became undetectable by PCR. The treated single cells then gave rise to microcolonies on a solid culture medium and the obtained viroid-negative clones were further promoted to regenerate into viroid-free plants. Three years of accumulated experimental data suggests feasibility, broad applicability, and good efficacy of the proposed approach. Y1 - 2018 U6 - https://doi.org/10.1111/ppa.12750 SN - 1365-3059 VL - 67 IS - 2 SP - 358 EP - 365 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Bassam, Rasha A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Digel, Ilya T1 - Effects of spermine NONOate and ATP on the thermal stability of hemoglobin JF - BMC Biophysics N2 - Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell. KW - Nitric Oxide Donor KW - NONOate KW - Circular Dichroism KW - Nitric Oxide Y1 - 2012 U6 - https://doi.org/10.1186/2046-1682-5-16 SN - 2046-1682 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Mansurov, Z. A1 - Digel, Ilya A1 - Biisenbaev, M. A1 - Savistkaya, I. A1 - Kistaubaeva, A. A1 - Akimbekov, Nuraly S. A1 - Zhubanova, A. T1 - Bio-composite material on the basis of carbonized rice husk in biomedicine and environmental applications JF - Eurasian Chemico-Technological Journal Y1 - 2012 U6 - https://doi.org/10.18321/ectj105 SN - 2522-4867 VL - 14 IS - 2 SP - 115 EP - 131 PB - Institute of Combustion Problems CY - Almaty ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Embs, Jan P. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Unruh, Tobias A1 - Büldt, Georg A1 - Zaccai, Guiseppe T1 - Cytoplasmic water and hydration layer dynamics in human red blood cells JF - Journal of the American Chemical Society. 50 (2008), H. 130 Y1 - 2008 SN - 1520-5126 SP - 16852 EP - 16853 ER - TY - JOUR A1 - Bassam, Rasha A1 - Artmann, Gerhard A1 - Hescheler, Jürgen A1 - Graef, T. A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Linder, Peter A1 - Kayser, Peter A1 - Arinkin, Vladimir A1 - Gossmann, Matthias A1 - Digel, Ilya T1 - Alterations in human hemoglobin structure related to red blood cell storage N2 - The importance of the availability of stored blood or blood cells, respectively, for urgent transfusion cannot be overestimated. Nowadays, blood storage becomes even more important since blood products are used for epidemiological studies, bio-technical research or banked for transfusion purposes. Thus blood samples must not only be processed, stored, and shipped to preserve their efficacy and safety, but also all parameters of storage must be recorded and reported for Quality Assurance. Therefore, blood banks and clinical research facilities are seeking more accurate, automated means for blood storage and blood processing. KW - Hämoglobin KW - Hämoglobinstruktur KW - Blutzellenlagerung KW - Hemoglobin structure KW - Red blood cell storage Y1 - 2011 ER - TY - CHAP A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Temiz Artmann, Aysegül T1 - Fibroblast response to mechanical stress: role of the adhesion substrate : [abstract] N2 - Mechanical stimulation of the cells resulted in evident changes in the cell morphology, protein composition and gene expression. Microscopically, additional formation of stress fibers accompanied by cell re-arrangements in a monolayer was observed. Also, significant activation of p53 gene was revealed as compared to control. Interestingly, the use of CellTech membrane coating induced cell death after mechanical stress had been applied. Such an effect was not detected when fibronectin had been used as an adhesion substrate. KW - Fibroblast KW - Mechanische Beanspruchung KW - celldrum technology Y1 - 2004 ER -