TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion JF - Journal of Engineering for Gas Turbines and Power N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Y1 - 2018 U6 - http://dx.doi.org/10.1115/1.4038882 SN - 0742-4795 N1 - Article number 081504; Paper No: GTP-17-1567 VL - 140 IS - 8 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan T1 - CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities JF - American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines. Y1 - 2016 SN - 2313-4402 VL - 26 IS - 3 SP - 290 EP - 303 PB - GSSRR ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan A1 - Bohn, D. T1 - CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities JF - Propulsion and Power Research KW - Micromix combustion KW - Hydrogen gas turbine KW - Hydrogen combustion KW - High hydrogen combustion KW - Dry-low-NOx (DLN) combustion Y1 - 2017 SN - 2212-540X U6 - http://dx.doi.org/10.1016/j.jppr.2017.01.005 VL - 6 IS - 1 SP - 15 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Kazari, Masahide A1 - Funke, Harald A1 - Keinz, Jan A1 - Kusterer, Karsten A1 - Haj Ayed, Anis T1 - Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design T2 - Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan Y1 - 2015 SN - 978-4-89111-008-6 N1 - IGTC15-0238 SP - 141 EP - 146 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21–25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - http://dx.doi.org/10.1115/GT2020-16328 N1 - Paper No. GT2020-16328, V04BT04A069 PB - American Society of Mechanical Engineers (ASME) ER -