TY - JOUR A1 - Küppers, Tobias A1 - Steffen, Victoria A1 - Hellmuth, Hendrik A1 - O'Connell, Timothy A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Wiechert, Wolfgang T1 - Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer JF - Microbial cell factories Y1 - 2014 U6 - https://doi.org/10.1186/1475-2859-13-46 SN - 1475-2859 (E-Journal) VL - 13 SP - Article No. 46 PB - BioMed Central CY - London ER - TY - PAT A1 - O'Connell, Timothy A1 - Siegert, Petra A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Weber, Thomas A1 - Maurer, Karl-Heinz A1 - Bessler, Cornelius T1 - Wasch- oder Reinigungsmittel mit gesteigerter Waschkraft [Offenlegungsschrift] T1 - Method from improving the cleaning action of a detergent of cleaning agent [US Patentanmeldung] Y1 - 2010 SP - 1 EP - 34 PB - Deutsches Patentamt CY - München ER - TY - JOUR A1 - Voigt, Birgit A1 - Albrecht, Dirk A1 - Sievers, Susanne A1 - Becher, Dörte A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Schweder, Thomas A1 - Maurer, Karl-Heinz A1 - Hecker, Michael T1 - High-resolution proteome maps of Bacillus licheniformis cells growing in minimal medium JF - Proteomics Y1 - 2015 U6 - https://doi.org/10.1002/pmic.201400504 SN - 1615-9861 VL - 15 IS - 15 SP - 2629 EP - 2633 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Handtke, Stefan A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Methling, Karen A1 - Schlüter, Rabea A1 - Albrecht, Dirk A1 - Hijum, Sacha A. F. T. van A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Schweder, Thomas A1 - Hecker, Michael A1 - Voigt, Birgit T1 - Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress JF - PLOS one N2 - Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0085625 SN - 1932-6203 VL - 9 IS - 1 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Handtke, Stefan A1 - Volland, Sonja A1 - Methling, Karen A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Nehls, Jenny A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Liesegang, Heiko A1 - Voigt, Birgit A1 - Daniel, Rolf A1 - Hecker, Michael T1 - Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach JF - Journal of Biotechnology N2 - Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC–MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed. Y1 - 2014 U6 - https://doi.org/10.1016/j.jbiotec.2014.08.028 SN - 1873-4863 (E-Journal); 0168-1656 (Print) IS - 192(A) SP - 204 EP - 214 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wiegand, Sandra A1 - Voigt, Birgit A1 - Albrecht, Dirk A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Hecker, Michael A1 - Daniel, Rolf A1 - Liesegang, Heiko T1 - Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production JF - Microbial Cell Factories Y1 - 2013 U6 - https://doi.org/10.1186/1475-2859-12-120 SN - 1475-2859 VL - 12 SP - 120 PB - Biomed Central CY - London ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - https://doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Rahba, Jade A1 - Fischer, David A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T JF - FEBS Open Bio N2 - Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0–12.0 and temperature 20–80 °C, optimally at pH 9.0–9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58% of residual activity when incubated at 10 °C with 5% (v/v) H2O2 for 1 h while stimulated at 1% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future. KW - Alkalihalobacillus okhensis KW - detergent protease KW - halotolerant protease KW - high-alkaline subtilisin KW - oxidative stable protease Y1 - 2022 U6 - https://doi.org/10.1002/2211-5463.13457 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 12 IS - 10 SP - 1729 EP - 1746 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER -