TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - http://dx.doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, N. S. A1 - Digel, Ilya A1 - Tastambek, K. T. A1 - Zhubanova, A. A. T1 - Biocompatibility of carbonized rice husk with a rat heart cells line H9c2 JF - Experimental Biology Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 59 IS - 3/1 SP - 23 EP - 25 ER - TY - JOUR A1 - Akimbekov, N.Sh. A1 - Digel, Ilya A1 - Savitkaya, I.S. A1 - Zhubanova, A.A. A1 - Tastambek, K.T. T1 - Investigations of LPS endotoxin elimination in the flowing column conditions with the sorbent on the basis of carbonized rice husk JF - KazNU Bulletin. Biology series Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 57 IS - 1 SP - 124 EP - 127 ER - TY - JOUR A1 - Akimbekov, N.Sh. A1 - Digel, Ilya A1 - O’Heras, C. A1 - Tastambek, K.T. A1 - Savitskaya, I.S. A1 - Ualyeva, P.S. A1 - Mansurov, Z.A. A1 - Zhubanova, A.A. T1 - Adsorption of bacterial lipopol ysaccharides on carbonized ri ce husks obtained in the batch experiments JF - KazNU Bulletin. Biology series Y1 - 2015 SN - 1563-0218 VL - 60 IS - No 1/2 SP - 144 EP - 148 ER - TY - JOUR A1 - Akimbekov, N.Sh. A1 - Digel, Ilya A1 - O´Heras, C. A1 - Tastambek, K.T. A1 - Savitskaya, I.S. A1 - Ualyeva, P.S. A1 - Mansurov, Z.A. A1 - Zhubanova, A.A. T1 - Adsorption of bacterial lipopolysaccharides on carbonized rice husks obtained in the batch experiments JF - Experimental Biology N2 - The scope of this study is the measurement of endotoxin adsorption rate for carbonized rice husk. It showed good adsorption properties for LPS. During the batch experiments, several techniques were used and optimized for improving the material’s adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. KW - surface modification KW - adsorption KW - carbonized rice husk KW - lipopolysaccharide Y1 - 2014 SN - 1563-0218 N1 - Original in russischer Sprache VL - 60 IS - 1/2 SP - 144 EP - 148 PB - Al-Farabi Kazakh National University CY - Almaty ER -