TY - CHAP A1 - Bragard, Michael A1 - Conrad, M. A1 - De Doncker, R. W. T1 - The integrated emitter turn-off thyristor (IETO) : an innovative thyristor based high power semiconductor device using MOS assisted turn-off T2 - 2010 IEEE Energy Conversion Congress and Exposition (ECCE 2010) : Atlanta, Georgia, USA, 12 - 16 September 2010 / [sponsored by the IEEE Power Electronics and Industry Applications Societies] Y1 - 2010 SN - 978-1-4244-5286-6 (Print) SN - 978-1-4244-5287-3 (Online) U6 - http://dx.doi.org/10.1109/ECCE.2010.5618410 SP - 4551 EP - 4557 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Bragard, Michael A1 - Conrad, M. A1 - van Hoek, H. A1 - De Doncker, R. W. T1 - The integrated emitter turn-off thyristor (IETO) : an innovative thyristor-based high power semiconductor device using MOS assisted turn-off JF - IEEE transactions on industry applications Y1 - 2011 U6 - http://dx.doi.org/10.1109/TIA.2011.2161432 SN - 0093-9994 VL - 47 IS - 5 SP - 2175 EP - 2182 PB - IEEE CY - New York ER - TY - JOUR A1 - Ross, Jillian A1 - Plummer, Simon M. A1 - Rode, Anja A1 - Scheer, Nico A1 - Bower, Conrad C. A1 - Vogel, Ortwin A1 - Henderson, Colin J. A1 - Wolf, C. Roland A1 - Elcombe, Clifford R. T1 - Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo JF - Toxicological Sciences N2 - Mouse nongenotoxic hepatocarcinogens phenobarbital (PB) and chlordane induce hepatomegaly characterized by hypertrophy and hyperplasia. Increased cell proliferation is implicated in the mechanism of tumor induction. The relevance of these tumors to human health is unclear. The xenoreceptors, constitutive androstane receptors (CARs), and pregnane X receptor (PXR) play key roles in these processes. Novel “humanized” and knockout models for both receptors were developed to investigate potential species differences in hepatomegaly. The effects of PB (80 mg/kg/4 days) and chlordane (10 mg/kg/4 days) were investigated in double humanized PXR and CAR (huPXR/huCAR), double knockout PXR and CAR (PXRKO/CARKO), and wild-type (WT) C57BL/6J mice. In WT mice, both compounds caused increased liver weight, hepatocellular hypertrophy, and cell proliferation. Both compounds caused alterations to a number of cell cycle genes consistent with induction of cell proliferation in WT mice. However, these gene expression changes did not occur in PXRKO/CARKO or huPXR/huCAR mice. Liver hypertrophy without hyperplasia was demonstrated in the huPXR/huCAR animals in response to both compounds. Induction of the CAR and PXR target genes, Cyp2b10 and Cyp3a11, was observed in both WT and huPXR/huCAR mouse lines following treatment with PB or chlordane. In the PXRKO/CARKO mice, neither liver growth nor induction of Cyp2b10 and Cyp3a11 was seen following PB or chlordane treatment, indicating that these effects are CAR/PXR dependent. These data suggest that the human receptors are able to support the chemically induced hypertrophic responses but not the hyperplastic (cell proliferation) responses. At this time, we cannot be certain that hCAR and hPXR when expressed in the mouse can function exactly as the genes do when they are expressed in human cells. However, all parameters investigated to date suggest that much of their functionality is maintained. Y1 - 2010 U6 - http://dx.doi.org/10.1093/toxsci/kfq118 SN - 1096-0929 VL - 116 IS - 2 SP - 452 EP - 466 PB - Oxford University Press CY - Oxford ER -