TY - JOUR A1 - Goßmann, Matthias A1 - Frotscher, Ralf A1 - Linder, Peter A1 - Bayer, Robin A1 - Epple, U. A1 - Staat, Manfred A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells JF - Cellular physiology and biochemistry N2 - Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential. KW - Inotropic compounds KW - Pharmacology KW - Ion channels KW - CellDrum KW - Heart tissue culture KW - Induced pluripotent stem cells KW - Cardiac myocytes Y1 - 2016 U6 - https://doi.org/10.1159/000443124 SN - 1421-9778 (Online) SN - 1015-8987 (Print) VL - 38 IS - 3 SP - 1182 EP - 1198 PB - Karger CY - Basel ER - TY - CHAP A1 - Staat, Manfred A1 - Tran, Ngoc Trinh T1 - Strain based brittle failure criteria for rocks T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These “paradox” fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. KW - Extension fracture KW - Extension strain criterion KW - Mohr–Coulomb criterion KW - Evolution of damage Y1 - 2023 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 500 EP - 509 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Horbach, Andreas A1 - Staat, Manfred T1 - Optical strain measurement for the modeling of surgical meshes and their porosity JF - Current Directions in Biomedical Engineering N2 - The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0045 SN - 2364-5504 VL - Band 4 IS - 1 SP - 181 EP - 184 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Ciobanu, Octavian A1 - Staat, Manfred A1 - Rahimi, Alireza T1 - The use of open source software in biomechanical finite element analysis JF - Buletinul Institutului Politehnic din Iaşi / Universitatea Tehnică Gh. Asachi, Iaşi Secţia 5, Construcţii de maşini = Machine construction = Bulletin of the Polytechnic Institute of Jassy = Izvestija Jasskogo Politechničeskogo Instituta Y1 - 2008 SN - 1011-2855 VL - 54 IS - 7/8 SP - 213 EP - 220 ER - TY - BOOK A1 - Staat, Manfred A1 - Heitzer, M. A1 - Yan, Ai-Min A1 - Khoi, Vu Duc A1 - Nguyen, Dang Hung A1 - Valdoire, F. A1 - Lahousse, A. T1 - Limit Analysis of Defects Y1 - 2000 SN - 0944-2952 N1 - Bericht des Forschungszentrums, Jül-3746, Jülich (2000) PB - Forschungszentrum Jülich CY - Jülich ER - TY - JOUR A1 - Staat, Manfred T1 - Probabilistic assessment of the fracture mechanics behaviour of an HTR-module primary circuit pressure boundary JF - Nuclear Engineering and Design. 160 (1996), H. 1-2 Y1 - 1996 SN - 0029-5493 SP - 221 EP - 236 ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Reliability Analysis of Elasto-Plastic Structures under Variable Loads JF - Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed] Y1 - 2000 SN - 0-7923-6645-X SP - 269 EP - 288 PB - Kluwer Academic Publ. CY - Dordrecht ER - TY - CHAP A1 - Birgel, Stefan A1 - Leschinger, Tim A1 - Wegmann, Kilian A1 - Staat, Manfred ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 N1 - In der Druckausgabe des Abstractbandes ist dieser Beitrag lose als Erratum beigefügt. SP - 116 EP - 117 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - BOOK A1 - Staat, Manfred A1 - Erni, Daniel T1 - Symposium Proceedings; 3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - BOOK A1 - Staat, Manfred A1 - Heitzer, Michael T1 - Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems. Y1 - 2003 SN - 3-00-010001-6 N1 - NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M. PB - John von Neumann Institute for Computing (NIC) CY - Jülich ER - TY - CHAP A1 - Burgazzi, Luciano A1 - Fiorini, Gian Luigi A1 - De Magistris, F. A1 - Lensa, Werner von A1 - Staat, Manfred A1 - Atles, J. T1 - Reliability Assessment of Passive Safety Systems T2 - Proceedings of the 6th International Conference on Nuclear Engineering : ICONE : May 10 - 14, 1998, San Diego, Calif. Y1 - 1998 N1 - CD-ROM PB - American Society of Mechanical Engineers CY - New York ER -