TY - JOUR A1 - Lagemaat, Miriam W. A1 - Breukels, Vincent A1 - Vos, Eline K. A1 - B., Adam A1 - Uden, Mark J. van A1 - Orzada, Stephan A1 - Bitz, Andreas A1 - Maas, Marnix C. A1 - Scheenen, Tom W. J. T1 - ¹H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses JF - Magnetic Resonance in Medicine N2 - Purpose To assess the feasibility of prostate ¹H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. Methods A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate ¹H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. Results Prostate ¹H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. Conclusion It is possible to perform prostate ¹H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times. Y1 - 2016 U6 - http://dx.doi.org/10.1002/mrm.25569 SN - 1522-2594 VL - 75 IS - 3 SP - 933 EP - 945 PB - International Society for Magnetic Resonance in Medicine ER - TY - JOUR A1 - Lagemaat, Miriam W. A1 - Maas, Marnix C. A1 - Vos, Eline K. A1 - Bitz, Andreas A1 - Orzada, Stephan A1 - Weiland, Elisabeth A1 - Uden, Mark J. van A1 - Kobus, Thiele A1 - Heerschap, Arend A1 - Scheenen, Tom W. J. T1 - (31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization JF - Magnetic Resonance in Medicine Y1 - 2015 U6 - http://dx.doi.org/10.1002/mrm.25209 SN - 1522-2594 VL - 73 IS - 3 SP - 909 EP - 920 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Lagemaat, Miriam W. A1 - Vos, Eline K. A1 - Maas, Marnix C. A1 - Bitz, Andreas A1 - Orzada, Stephan A1 - Uden, Mark J. van A1 - Kobus, Thiele A1 - Heerschap, Arend A1 - Scheenen, Tom W. J. T1 - Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer JF - Investigative Radiology N2 - Objectives The aim of this study was to identify characteristics of phosphorus (³¹P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) at 7 T. Materials and Methods In this institutional review board–approved study, 15 patients with biopsy-proven prostate cancer underwent T₂-weighted magnetic resonance imaging and 3-dimensional ³¹P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Results Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most ³¹P spectra in the prostate. Glycerophosphocholine signals were observable in 43% of the voxels in malignant tissue, but in only 10% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of ³¹P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Conclusions Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in ³¹P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels. Y1 - 2014 U6 - http://dx.doi.org/10.1097/RLI.0000000000000012 SN - 1536-0210 VL - 49 IS - 5 SP - 363 EP - 372 PB - Lippincott Williams & Wilkins CY - Philadelphia, Pa. ER -