TY - CHAP A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Analysis of volumetric solar radiation absorbers made of wire meshes T2 - AIP Conference Proceedings Y1 - 2019 U6 - http://dx.doi.org/10.1063/1.5117521 SN - 0094243X VL - 2126 SP - 030009-1 EP - 030009-6 ER - TY - CHAP A1 - May, Martin A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - Latzke, Markus A1 - Bäumer, Klaus A1 - Uhlig, Ralf A1 - Söhn, Matthias A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Experimental facility for investigations of wire mesh absorbers for pressurized gases T2 - AIP Conference Proceedings Y1 - 2019 U6 - http://dx.doi.org/10.1063/1.5117547 SN - 0094243X VL - 2126 SP - 030035-1 EP - 030035-9 ER - TY - CHAP A1 - Neumann, Hannah A1 - Adam, Mario A1 - Backes, Klaus A1 - Börner, Martin A1 - Clees, Tanja A1 - Doetsch, Christian A1 - Glaeser, Susanne A1 - Herrmann, Ulf A1 - May, Johanna A1 - Rosenthal, Florian A1 - Sauer, Dirk Uwe A1 - Stadler, Ingo T1 - Development of open educational resources for renewable energy and the energy transition process T2 - ISES SWC 2021 N2 - The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material. KW - energy transition KW - renewable energies KW - open educational resources KW - dissemination KW - digitalization Y1 - 2021 U6 - http://dx.doi.org/10.18086/swc.2021.47.03 N1 - ISES Solar World Congress, virtual conference 25-29 October 2021 PB - International Solar Energy Society CY - Freiburg ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Noureldin, Kareem A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further. KW - Power plants KW - Energy storage KW - Associated liquids Y1 - 2023 SN - 978-0-7354-4623-6 U6 - http://dx.doi.org/10.1063/5.0148741 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September–1 October 2021 Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Meyer, S. A1 - Hänel, Matthias A1 - Beeh, B. A1 - Dittmann-Gabriel, Sören A1 - Dluhosch, R. A1 - May, Martin A1 - Herrmann, Ulf A1 - [und 5 weitere], T1 - Multifunktionaler thermischer Stromspeicher für die Strom- und Wärmeversorgung der Industrie von morgen JF - ETG Journal / Energietechnische Gesellschaft im VDE (ETG) Y1 - 2020 SN - 2625-9907 VL - 2020 IS - 1 SP - 6 EP - 9 ER - TY - JOUR A1 - Herrmann, Ulf A1 - Schwarzenbart, Marc A1 - Dittmann-Gabriel, Sören A1 - May, Martin T1 - Hochtemperatur-Wärmespeicher für die Strom- und Wärmewende JF - Solarzeitalter : Politik, Kultur und Ökonomie erneuerbarer Energien Y1 - 2019 SN - 0937-3802 VL - 31 IS - 2 SP - 18 EP - 23 ER -