TY - JOUR A1 - Poghossian, Arshak A1 - Berndsen, L. A1 - Schöning, Michael Josef T1 - Chemical sensor as a physical sensor: ISFET-based flowvelocity, flow-direction and diffusion-coefficient sensor JF - Book of abstracts / ed. by J. Saneistr. Y1 - 2002 SN - 80-01-02576-4 N1 - Eurosensors ; (16, 2002, Praha) SP - 649 EP - 652 PB - Czech Technical University, Faculty of Electrical Engineering, Department of Measurement CY - Prague ER - TY - JOUR A1 - Näther, Niko A1 - Auger, V. A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - A miniaturized flow-through cell in SU-8 technique for EIS sensors JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 994 EP - 995 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Weiland, Maryam A1 - Schöning, Michael Josef ED - Lvova, Larisa ED - Kirsanov, Dmitry ED - di Natale, Corrado ED - Legin, Audrey T1 - Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing T2 - Multisensor system for chemical analysis : materials and sensors N2 - An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events. Y1 - 2014 SN - 978-981-4411-15-8 ; 978-981-4411-16-5 U6 - https://doi.org/10.1201/b15491-11 SP - 333 EP - 373 PB - Jenny Stanford Publishing CY - Singapore ET - 1 ER - TY - JOUR A1 - Buniatyan, V. A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Aroutiounian, V. M. A1 - Schöning, Michael Josef T1 - BaxSr1-x TiO3/pc-Si heterojunction capacitance JF - Armenian journal of physics Y1 - 2013 SN - 1829-1171 VL - 6 IS - 4 SP - 188 EP - 197 PB - National Academy of Sciences of Armenia CY - Yerevan ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Poghossian, Arshak A1 - Schultze, Joachim W. T1 - Measuring seven parameters by two ISFET modules in a microcell set-up JF - Int. Journal of Computational Engineering Science. 4 (2003), H. 2 Y1 - 2003 SN - 1465-8763 SP - 257 EP - 260 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - (Bio-­)chemical sensor array based on nanoplate SOI capacitors T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 31 EP - 31 ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Kramer, Friederike A1 - Begoyan, Vardges K. A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - Multi-parameter sensing using high-k oxide of barium strontium titanate JF - Physica status solidi (a) N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431911 SN - 1862-6319 VL - 212 IS - 6 SP - 1259 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - Biopolymer-degradation monitoring by chip-­based impedance spectroscopy technique T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 47 EP - 47 ER - TY - JOUR A1 - Iken, Heiko A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Wilhelm A1 - Schubert, Jürgen P. A1 - Schöning, Michael Josef T1 - Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors JF - Electrochimica acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) SP - Available online 30.8.2013 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vahidpour, Farnoosh A1 - Alghazali, Yousef H. M. A1 - Akca, Sevilay A1 - Hommes, Gregor A1 - Schöning, Michael Josef T1 - An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol JF - Chemosensors N2 - This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs’ capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry. Y1 - 2022 U6 - https://doi.org/10.3390/chemosensors10060202 SN - 2227-9040 N1 - This article belongs to the Special Issue "Bioinspired Chemical Sensors and Micro-Nano Devices" VL - 10 IS - 6 PB - MDPI CY - Basel ER -