TY - JOUR A1 - Tix, Julian A1 - Moll, Fabian A1 - Krafft, Simone A1 - Betsch, Matthias A1 - Tippkötter, Nils T1 - Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana JF - Energies N2 - Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L−1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83% could be measured in the overhead space. KW - Biological hydrogen KW - Organic waste KW - Dark fermentation KW - Hydrolysis KW - Pretreatment Y1 - 2024 U6 - https://doi.org/10.3390/en17122938 SN - 1996-1073 N1 - Corresponding author: Nils Tippkötter VL - 17 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hengsbach, Jan-Niklas A1 - Engel, Mareike A1 - Cwienczek, Marcel A1 - Stiefelmaier, Judith A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Scalable unseparated bioelectrochemical reactors by using a carbon fiber brush as stirrer and working electrode JF - ChemElectroChem N2 - The concept of energy conversion into platform chemicals using bioelectrochemical systems (BES) has gained increasing attention in recent years, as the technology simultaneously provides an opportunity for sustainable chemical production and tackles the challenge of Power-to-X technologies. There are many approaches to realize the industrial scale of BES. One concept is to equip standard bioreactors with static electrodes. However, large installations resulted in a negative influence on various reactor parameters. In this study, we present a new single-chamber BES based on a stirred tank reactor in which the stirrer was replaced by a carbon fiber brush, performing the functions of the working electrode and the stirrer. The reactor is characterized in abiotic studies and electro-fermentations with Clostridium acetobutylicum. Compared to standard reactors an increase in butanol production of 20.14±3.66 % shows that the new BES can be efficiently used for bioelectrochemical processes. Y1 - 2023 U6 - https://doi.org/10.1002/celc.202300440 SN - 2196-0216 VL - 10 IS - 21 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Rezension zu: Encyclopedia of Industrial Biotechnology, Vol. 1–7. By MC Flickinger. JF - Chemie Ingenieur Technik Y1 - 2012 U6 - https://doi.org/10.1002/cite.201290052 SN - 0009-286X SN - 1522-2640 (eISSN) VL - 6 IS - 84 SP - 936 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Tippkötter, Nils A1 - Möhring, Sophie A1 - Roth, Jasmine A1 - Wulfhorst, Helene T1 - Logistics of lignocellulosic feedstocks: preprocessing as a preferable option T2 - Biorefineries N2 - In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material. KW - Analytics KW - Decentral KW - Mechanical KW - On-site KW - Pre-treatment Y1 - 2019 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - https://doi.org/10.1007/10_2017_58 N1 - Advances in biochemical engineering/biotechnology ; Vol. 166 SP - 43 EP - 68 PB - Springer CY - Cham ER - TY - GEN A1 - Rothkranz, Berit A1 - Krafft, Simone A1 - Tippkötter, Nils T1 - Media optimization for sustainable fuel production: How to produce biohydrogen from renewable resources with Thermotoga neapolitana T2 - Chemie Ingenieur Technik N2 - Hydrogen is playing an increasingly important role in research and politics as an energy carrier of the future. Since hydrogen has commonly been produced from methane by steam reforming, the need for climate-friendly, alternative production routes is emerging. In addition to electrolysis, fermentative routes for the production of so-called biohydrogen are "green" alternatives. The application of microorganisms offers the advantage of sustainable production from renewable resources using easily manageable technologies. In this project, the hyperthermophilic, anaerobic microorganism Thermotoga neapolitana is used for the productio nof biohydrogen from renewable resources. The enzymatically hydrolyzed resources were used in fermentation leading to yield coefficients of 1.8 mole H₂ per mole glucose when using hydrolyzed straw and ryegrass supplemented with medium, respectively. These results are similar to the hydrogen yields when using Thermotoga basal medium with glucose (TBGY) as control group. In order to minimize the supplementation of the hydrolysate and thus increase the economic efficiency of the process, the essential media components were identified. The experiments revealed NaCl, KCl, and glucose as essential components for cell growth as well as biohydrogen production. When excluding NaCl, a decrease of 96% in hydrogen production occured. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255305 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1298 EP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Varriale, Ludovica A1 - Kuka, Katrin A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Use of a green biomass in a biorefinery platform T2 - Chemie Ingenieur Technik N2 - The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255095 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1299 PB - Wiley-VCH CY - Weinheim ER - TY - BOOK A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries / Kurt Wagemann, Nils Tippkötter (editors) T3 - Advances in biochemical engineering/biotechnology book series (ABE) Y1 - 2019 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - https://doi.org/10.1007/978-3-319-97119-3 PB - Springer CY - Cham (Switzerland) ER - TY - GEN A1 - Ross-Jones, J. A1 - Teumer, T. A1 - Capitain, C. A1 - Tippkötter, Nils A1 - Krause, M. J. A1 - Methner, F.-J. A1 - Rädle, M. T1 - Analytical methods for in-line characterization of beer haze T2 - Trends in Brewing N2 - In most beers, producers strive to minimize haze to maximize visual appeal. To detect the formation of particulates, a measurement system for sub-micron particles is required. Beer haze is naturally occurring, composed of protein or polyphenol particles; in their early stage of growth their size is smaller than 2 µm. Microscopy analysis is time and resource intensive; alternatively, backscattering is an inexpensive option for detecting particle sizes of interest. Y1 - 2018 N1 - Trends in Brewing, April 8 –12, 2018, Ghent, Belgium ER - TY - GEN A1 - Duwe, A. A1 - Schlegel, C. A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Sequentielle Extraktion von Cellulose zur effizienten Nutzung der Stoffströme in der Holzbioraffinerie T2 - Chemie Ingenieur Technik N2 - In der Reihe der nachwachsenden Rohstoffe besitzt Holz als erneuerbare und umweltfreundliche Ressource ein großes Potenzial. Über 11 Mio. ha Holz, das laut der Fachagentur für nachwachsende Rohstoffe (FNR) auch für industrielle Zwecke genutzt werden kann, wuchsen im Jahr 2013 allein auf bundesdeutscher Fläche. 56,8 Mio. m³ jährlicher Holzeinschlag in den letzten zehn Jahren wurde zu knapp der Hälfte stofflich und der Rest energetisch verwertet. Im Rahmen dieser Arbeit konnte auf der Basis vom Holz der Buche, die nach Fichte und Kiefer die dritthäufigste Baumart in Deutschland ist und 15% der deutschen Waldfläche ausmacht, die Fraktionierung der polymeren Hauptbestandteile mit niedrigem energetischen Einsatz erreicht werden. Hierbei werden in einem nachgeschalteten Extraktionsprozess die beiden Komponenten Hemicellulose und Lignin in flüssiger Form von der finalen festen Cellulosefraktion abgetrennt. Die Extraktion der Hemicellulose erfolgt durch eine Liquid Hot Water (LHW)-Behandlung. Untersucht wird der katalytische Zusatz anorganischer Säuren wie H₃PO₄ und H₂SO₄. Im Hinblick auf die weitere Verwertung von Lignin zu aromatischen Synthesebausteinen kommt die Organosolv-Extraktion mit einem Ethanol/Wasser-Gemisch zum Einsatz. Von Vorteil ist die weitere Verwendung beider Stoffströme ohne Fällungsschritt und nachteiliger Verdünnung der Hemicellulose. Y1 - 2014 U6 - https://doi.org/10.1002/cite.201450308 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2014 und 31. DECHEMA-Jahrestagung der Biotechnologen, 30. September - 2. Oktober 2014, Eurogress Aachen VL - 86 IS - 9 SP - 1400 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Hahn, Thomas A1 - Kelly, Svenja A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Ulber, Roland ED - Hans-Jörg, Bart ED - Pilz, Stephan T1 - Extraction of lignocellulose and algae for the production of bulk and fine chemicals T2 - Industrial scale natural products extraction Y1 - 2011 SN - 978-3-527-32504-7 (Print) SN - 978-3-527-63512-2 (Online) U6 - https://doi.org/10.1002/9783527635122 SP - 221 EP - 245 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pasteur, Aline A1 - Tippkötter, Nils A1 - Kampeis, Percy A1 - Ulber, Roland T1 - Optimization of high gradient magnetic separation filter units for the purification of fermentation products JF - IEEE TRANSACTIONS ON MAGNETICS N2 - High gradient magnetic separation (HGMS) has been established since the early 1970s. A more recent application of these systems is the use in bioprocesses. To integrate the HGMS in a fermentation process, it is necessary to optimize the separation matrix with regard to the magnetic separation characteristics and permeability of the non-magnetizable components of the fermentation broth. As part of the work presented here, a combined fluidic and magnetic force finite element model simulation was created using the software COMSOL Multiphysics and compared with separation experiments. Finally, as optimal lattice orientation of the separation matrix, a transversal rhombohedral arrangement was defined. The high suitability of the new filter matrix has been verified by separation experiments. Y1 - 2014 U6 - https://doi.org/10.1109/TMAG.2014.2325535 SN - 0018-9464 N1 - Article Sequence Number: 5000607 INSPEC Accession Number: 14663042 VL - 50 IS - 10 SP - Artikel 5000607 PB - IEEE CY - New York, NY ER - TY - PAT A1 - Al-Kaidy, Huschyar A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - A system and a method for the implementation of chemical, biological or physical reactions [Europäische Patentanmeldung] N2 - The invention relates to a system for the implementation of chemical, biological or physical reactions, consisting of - one or more magnetic micro-reactors, each comprising a shell made of hydrophobic magnetic nanoparticles encapsulating an aqueous core, - a plane platform comprising a surface to receive the micro-reactors, - a source that generates a magnetic field above or underneath the platform for manipulating the one or more hydrophobic magnetic micro-reactors, or for moving them along the surface of the platform from one position to another position, characterized in that the aqueous core of the one or more magnetic micro-reactors contains a reaction solution or buffer, and wherein the magnetic field generated by the source correlates to a defined position on the surface of the platform. Y1 - 2013 PB - Europäisches Patentamt CY - Den Hague ER - TY - JOUR A1 - Wiesen, Sebastian A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Adsorption of fatty acids to layered double hydroxides in aqueous systems JF - Adsorption N2 - Due to their anion exchange characteristics, layered double hydroxides (LDHs) are suitable for the detoxification of aqueous, fatty acid containing fermentation substrates. The aim of this study is to examine the adsorption mechanism, using crude glycerol from plant oil esterification as a model system. Changes in the intercalation structure in relation to the amount of fatty acids adsorbed are monitored by X-ray diffraction and infra-red spectroscopy. Additionally, calcination of LDH is investigated in order to increase the binding capacity for fatty acids. Our data propose that, at ambient temperature, fatty acids can be bound to the hydrotalcite by adsorption or in addition by intercalation, depending on fatty acid concentration. The adsorption of fatty acids from crude glycerol shows a BET-like behavior. Above a fatty acid concentration of 3.5 g L−1, intercalation of fatty acids can be shown by the appearance of an increased interlayer spacing. This observation suggests a two phase adsorption process. Calcination of LDHs allows increasing the binding capacity for fatty acids by more than six times, mainly by reduction of structural CO32−. Y1 - 2015 VL - 21 IS - 6-7 SP - 459 EP - 466 PB - Springer CY - Berlin ER - TY - CHAP A1 - Poth, Sebastian A1 - Monzon, Magaly A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Lignocellulosic biorefinery : process integration of hydrolysis and fermentation T2 - Proceedings / 11th European Workshop on Lignocellulosics and Pulp : August 16 - 19, 2010, Hamburg, Germany Y1 - 2010 SP - 65 EP - 68 PB - vTi CY - Hamburg ER - TY - GEN A1 - Krafft, Simone A1 - Kuka, Katrin A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Utilization of Lolium perenne varieties as a renewable substrate for single-cell proteins, lactate, and composite materials T2 - Chemie Ingenieur Technik N2 - Lolium perenne (perennial ryegrass) is aproductive and high-quality forage grass indigenous to Southern Europe, temperate Asia, and North Africa. Nowadays it is widespread and the dominant grass species on green areas in temperate climates. This abundant source of biomass is suitable for the development of bioeconomic processes because of its high cellulose and water-soluble carbohydrate content. In this work, novel breeds of the perennial ryegrass are being examined with regards to their quality parameters and biotechnological utilization options within the context of bioeconomy. Three processing operations are presented. In the first process, the perennial ryegrass is pretreated by pressing or hydrothermal extraction to derive glucosevia subsequent enzymatic hydrolysis of cellulose. A yield of up to 82 % glucose was achieved when using the hydrothermal ex-traction as pretreatment. In a second process, the ryegrass is used to produce lactic acid in high concentrations. The influence of the growth conditions and the cutting time on the carboxylic acid yield is investigated. A yield of lactic acid of above 150 g kg⁻¹ dry matter was achieved. The third process is to use Lolium perenne as a substrate in the fermentation of K. marxianus for the microbial production of single-cell proteins. The perennial ryegrass is screw-pressed and the press juice is used as medium. When supplementing the press juice with yeast media components, a biomass concentration of up to 16 g L⁻¹ could be achieved. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255306 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1303 EP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Roth, Jasmine A1 - Tippkötter, Nils T1 - Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium JF - Cellulose Chemistry and Technology N2 - Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹. Y1 - 2016 VL - 50 IS - 3-4 SP - 405 EP - 410 PB - Editura Academiei Romane CY - Bukarest ER - TY - GEN A1 - Roth, J. A1 - Tippkötter, Nils T1 - New Approach for Enzymatic Hydrolysis of Lignocellulose with Selective Diffusion Separation of the Monosaccharide Products T2 - Chemie Ingenieur Technik N2 - Enzymatic hydrolysis of lignocellulosic material plays an important role in the classical biorefinery approach. Apart from the pretreatment of the raw material, hydrolysis is the basis for the conversion of the cellulose and hemicellulose fraction into fermentable sugars. After hydrolysis, usually a solid-liquid separation takes place, in order to separate the residual plant material from the sugar-rich fraction, which can be subsequently used in a fermentation step. In order to factor out the separation step, the usage of in alginate immobilized crude cellulose fiber beads (CFBs) were evaluated. Pretreated cellulose fibers are incorporated in an alginate matrix together with the relevant enzymes. In doing so, sugars diffuse trough the alginate matrix, allowing a simplified delivery into the surrounding fluid. This again reduces product inhibition of the glucose on the enzyme catalysts. By means of standardized bead production the hydrolysis in lab scale was possible. First results show that liberation of glucose and xylose is possible, allowing a maximum total sugar yield of 75 %. Y1 - 2016 U6 - https://doi.org/10.1002/cite.201650301 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2016 und 32. DECHEMA-Jahrestagung der Biotechnologen 2016, 12. - 15. September 2016, Eurogress Aachen VL - 88 IS - 9 SP - 1237 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Oehlenschläger, Katharina A1 - Volkmar, Marianne A1 - Stiefelmaier, Judith A1 - Langsdorf, Alexander A1 - Holtmann, Dirk A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum JF - Applied Microbiology and Biotechnology N2 - Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured. KW - Pre-culture KW - Metabolic shift KW - Acid crash KW - C. acetobutylicum KW - ABE KW - Butanol Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12981-8 SN - 1432-0614 VL - 108 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Al-Kaidy, Huschyar A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - A platform technology for the automated reaction control in magnetizable micro-fluidic droplets T2 - Biomaterials - made in bioreactors : book of abstracts, May 26 - 28, 2014, Radisson Blu Park Hotel and Conference Dentre, Radebeul, Germany Y1 - 2014 SP - 21 EP - 22 PB - DECHEMA CY - Frankfurt am Main ER -