TY - CHAP A1 - Akimbekov, Nuraly A1 - Zhanadilovna, Abdieva G. A1 - Ualieva, Perizat S. A1 - Abaihanovna, Zhusipova D. A1 - Digel, Ilya A1 - Savitskaya, Irina S. A1 - Zhubanova, Azhar Achmet T1 - Functionalization of Carbon Based Wound Dressings with Antimicrobial Phytoextracts for Bioactive Treatment of Septic Wounds T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The treatment of septic wounds with curative dressings based on biocomposites containing sage and marigold phytoextracts was effective in in vitro and in vivo experiments. These dressings caused the purification of the wound surface from purulent-necrotic masses three days earlier than in the other experimental groups. The consequence of an increase in incidents of severe course of the wound and the observed tendency to increase the number of adverse effects is the development of long-term recurrent wound processes. To treat purulent wounds, the following tactics were used: The purulent wounds of animals were covered with the examined wound dressing, and then the next day samples were taken, the procedure was performed once in 2 days. To obtain the active nanostructured sorbents such as carbonized rice husks, they are functionalized with biologically active components possessing antimicrobial, anti-inflammatory, antitoxic, immunomodulating, antiallergic and other types of properties. Y1 - 2020 SN - 978-981-4800-27-3 U6 - http://dx.doi.org/10.1201/9780429428647-11 SP - 211 EP - 228 PB - Jenny Stanford Publishing CY - Singapore ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - http://dx.doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Digel, Ilya A1 - Kern, Inna A1 - Geenen, Eva-Maria A1 - Akimbekov, Nuraly T1 - Dental plaque removal by ultrasonic toothbrushes JF - dentistry journal N2 - With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness. Y1 - 2020 U6 - http://dx.doi.org/10.3390/dj8010028 SN - 2304-6767 VL - 8 IS - 28 SP - 1 EP - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - http://dx.doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Mansurov, Zulkhair A. A1 - Jandosov, Jakpar A1 - Chenchik, D. A1 - Azat, Seitkhan A1 - Savitskaya, Irina S. A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Zhubanova, Azhar Achmet T1 - Biocomposite Materials Based on Carbonized Rice Husk in Biomedicine and Environmental Applications T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - This chapter describes the prospects for biomedical and environmental engineering applications of heterogeneous materials based on nanostructured carbonized rice husk. Efforts in engineering enzymology are focused on the following directions: development and optimization of immobilization methods leading to novel biotechnological and biomedical applications; construction of biocomposite materials based on individual enzymes, multi-enzyme complexes and whole cells, targeted on realization of specific industrial processes. Molecular biological and biochemical studies on cell adhesion focus predominantly on identification, isolation and structural analysis of attachment-responsible biological molecules and their genetic determinants. The chapter provides a short overview of applications of the biocomposite materials based of nanostructured carbonized adsorbents. It emphasizes that further studies and better understanding of the interactions between CNS and microbial cells are necessary. The future use of living cells as biocatalysts, especially in the environmental field, needs more systematic investigations of the microbial adsorption phenomenon. Y1 - 2020 SN - 978-981-4800-27-3 U6 - http://dx.doi.org/10.1201/9780429428647-2 SP - 3 EP - 32 PB - Jenny Stanford Publishing Pte. Ltd. CY - Singapore ER -