TY - CHAP A1 - Pfetsch, Marc E. A1 - Abele, Eberhard A1 - Altherr, Lena A1 - Bölling, Christian A1 - Brötz, Nicolas A1 - Dietrich, Ingo A1 - Gally, Tristan A1 - Geßner, Felix A1 - Groche, Peter A1 - Hoppe, Florian A1 - Kirchner, Eckhard A1 - Kloberdanz, Hermann A1 - Knoll, Maximilian A1 - Kolvenbach, Philip A1 - Kuttich-Meinlschmidt, Anja A1 - Leise, Philipp A1 - Lorenz, Ulf A1 - Matei, Alexander A1 - Molitor, Dirk A. A1 - Niessen, Pia A1 - Pelz, Peter F. A1 - Rexer, Manuel A1 - Schmitt, Andreas A1 - Schmitt, Johann M. A1 - Schulte, Fiona A1 - Ulbrich, Stefan A1 - Weigold, Matthias T1 - Strategies for mastering uncertainty T2 - Mastering uncertainty in mechanical engineering N2 - This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems. Y1 - 2021 SN - 978-3-030-78353-2 U6 - http://dx.doi.org/10.1007/978-3-030-78354-9_6 N1 - Part of the Springer Tracts in Mechanical Engineering book series (STME) SP - 365 EP - 456 PB - Springer CY - Cham ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Neufeld, Janis S. ED - Buscher, Udo ED - Lasch, Rainer ED - Möst, Dominik ED - Schönberger, Jörn T1 - Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics T2 - Operations Research Proceedings 2019 N2 - Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience. KW - OR 2019 KW - business analytics KW - decision analytics KW - digital economy KW - mathematical optimization Y1 - 2020 SN - 978-3-030-48439-2 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_63 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 521 EP - 527 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. A1 - Pöttgen, Philipp ED - Lübbecke, Marco E. ED - Koster, Arie ED - Letmathe, Peter ED - Madlener, Reihard ED - Preis, Britta ED - Walther, Grit T1 - Designing a feedback control system via mixed-integer programming T2 - Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research N2 - Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap. KW - Optimal Topology KW - Controller Parameter KW - Level Control System KW - Technical Operation Research KW - Optimal Closed Loop Y1 - 2016 SN - 978-3-319-28695-2 U6 - http://dx.doi.org/10.1007/978-3-319-28697-6_18 SP - 121 EP - 127 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Schmitt, Andreas A1 - Leise, Philipp A1 - Meck, Tobias A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Pfetsch, Marc E. T1 - Validation of an optimized resilient water supply system T2 - Uncertainty in Mechanical Engineering N2 - Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems. KW - Optimization KW - Mixed-integer nonlinear programming KW - Water distribution system KW - Resilience KW - Validation Y1 - 2021 SN - 978-3-030-77255-0 SN - 978-3-030-77256-7 U6 - http://dx.doi.org/10.1007/978-3-030-77256-7_7 N1 - Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7–8, 2021 SP - 70 EP - 80 PB - Springer CY - Cham ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Simon, Nicolai A1 - Pelz, Peter F. T1 - Finding global-optimal gearbox designs for battery electric vehicles T2 - Optimization of complex systems - theory, models, algorithms and applications : WCGO 2019 N2 - In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements. KW - Powertrain KW - Gearbox KW - Optimization KW - BEV KW - WLTP Y1 - 2019 SN - 978-3-030-21802-7 U6 - http://dx.doi.org/10.1007/978-3-030-21803-4_91 SP - 916 EP - 925 PB - Springer CY - Cham ER - TY - JOUR A1 - Rausch, Lea A1 - Friesen, John A1 - Altherr, Lena A1 - Meck, Marvin A1 - Pelz, Peter F. T1 - A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data JF - Remote Sensing N2 - Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data. KW - water supply design KW - mathematical optimization KW - slum classification KW - remote sensing Y1 - 2018 SN - 2072-4292 U6 - http://dx.doi.org/10.3390/rs10020216 VL - 10 IS - 2 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. A1 - Pelz, Peter F. T1 - Maschinelles Design eines optimalen Getriebes JF - ATZ - Automobiltechnische Zeitschrift N2 - Nahezu 100.000 denkbare Strukturen kann ein Getriebe bei gleicher Funktion aufweisen - je nach Ganganzahl und gefordertem Freiheitsgrad. Mit dem traditionellen Ansatz bei der Entwicklung, einzelne vielversprechende Systemkonfigurationen manuell zu identifizieren und zu vergleichen, können leicht innovative und vor allem kostenminimale Lösungen übersehen werden. Im Rahmen eines Forschungsprojekts hat die TU Darmstadt spezielle Optimierungsmethoden angewendet, um auch bei großen Lösungsräumen zielsicher ein für die individuellen Zielstellungen optimales Layout zu finden. Y1 - 2018 SN - 2192-8800 U6 - http://dx.doi.org/10.1007/s35148-018-0131-3 VL - 120 IS - 10 SP - 72 EP - 77 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Ahola, Marja A1 - Schabel, Samuel A1 - Pelz, Peter F. ED - Rodrigues, H. C. T1 - Multi-Criteria optimization of pressure screen systems in paper recycling – balancing quality, yield, energy consumption and system complexity T2 - EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization N2 - The paper industry is the industry with the third highest energy consumption in the European Union. Using recycled paper instead of fresh fibers for papermaking is less energy consuming and saves resources. However, adhesive contaminants in recycled paper are particularly problematic since they reduce the quality of the resulting paper-product. To remove as many contaminants and at the same time obtain as many valuable fibres as possible, fine screening systems, consisting of multiple interconnected pressure screens, are used. Choosing the best configuration is a non-trivial task: The screens can be interconnected in several ways, and suitable screen designs as well as operational parameters have to be selected. Additionally, one has to face conflicting objectives. In this paper, we present an approach for the multi-criteria optimization of pressure screen systems based on Mixed-Integer Nonlinear Programming. We specifically focus on a clear representation of the trade-off between different objectives. Y1 - 2019 SN - 978-3-319-97773-7 U6 - http://dx.doi.org/10.1007/978-3-319-97773-7_105 N1 - EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. 17-19 September 2018. Lisboa, Portugal PB - Springer International Publishing CY - Basel ER - TY - JOUR A1 - Sun, Hui A1 - Altherr, Lena A1 - Pei, Ji A1 - Pelz, Peter F. A1 - Yuan, Shouqi T1 - Optimal booster station design and operation under uncertain load JF - Applied Mechanics and Materials N2 - Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system’s resilience can be engineered KW - Stochastic Programming KW - Chance Constraint KW - Engineering Application KW - Pump System KW - Water Distribution Y1 - 2018 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.885.102 SN - 1662-7482 VL - 885 SP - 102 EP - 115 PB - Trans Tech Publications CY - Bäch ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Ahola, Marja A1 - Schabel, Samuel A1 - Pelz, Peter F. T1 - Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation N2 - Around 60% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield. KW - Mixed-integer nonlinear problem KW - MINLP KW - Process engineering KW - Paper recycling KW - Multi-criteria optimization Y1 - 2018 SN - 978-3-030-18499-5 U6 - http://dx.doi.org/10.1007/978-3-030-18500-8_44 SP - 355 EP - 361 PB - Springer CY - Cham ER - TY - JOUR A1 - Leise, Philipp A1 - Eßer, Arved A1 - Eichenlaub, Tobias A1 - Schleiffer, Jean-Eric A1 - Altherr, Lena A1 - Rinderknecht, Stephan A1 - Pelz, Peter F. T1 - Sustainable system design of electric powertrains - comparison of optimization methods JF - Engineering Optimization N2 - The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal ‘climate action’ stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed. KW - Powertrain KW - stochastic optimization KW - global optimization KW - genetic algorithm Y1 - 2021 U6 - http://dx.doi.org/10.1080/0305215X.2021.1928660 SN - 0305-215X PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Leise, Philipp A1 - Breuer, Tim A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Development, validation and assessment of a resilient pumping system T2 - Proceedings of the Joint International Resilience Conference, JIRC2020 N2 - The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour. KW - water supply system KW - fault detection KW - anticipation strategy Y1 - 2020 SN - 978-90-365-5095-6 N1 - Proceedings of the Joint International Resilience Conference 2020. Interconnected: Resilience Innovations for Sustainable Development Goals. 23 - 27 November, 2020 SP - 97 EP - 100 ER - TY - CHAP A1 - Lorenz, Imke-Sophie B. A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Graph-theoretic resilience analysis of a water distribution system's topology T2 - World Congress on Resilience, Reliability and Asset Management 2019 N2 - Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the resilience of WDS KW - Resilience Assessment KW - Graph Theory KW - Water Supply System KW - Case Study Y1 - 2019 N1 - World Congress on Resilience, Reliability and Asset Management, 28-31 July 2019. Furama Riverfront Hotel, Singapore SP - 106 EP - 109 ER - TY - CHAP A1 - Meck, Marvin M. A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Improving an industrial cooling system using MINLP, considering capital and operating costs T2 - Operations Research Proceedings 2019 N2 - The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system. KW - Engineering optimisation KW - Mixed-integer programming KW - Industrial optimisation KW - Cooling system KW - Process engineering Y1 - 2020 SN - 978-3-030-48438-5 (Print) SN - 978-3-030-48439-2 (Online) U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_61 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019. SP - 505 EP - 512 PB - Springer CY - Cham ER - TY - JOUR A1 - Müller, Tim M. A1 - Leise, Philipp A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Optimization and validation of pumping system design and operation for water supply in high-rise buildings JF - Optimization and Engineering N2 - The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer’s point of view, keeping in mind the economically important trade-off between investment and operation costs. KW - Technical Operations Research KW - MINLP KW - MILP KW - Experimental validation KW - Pumping systems Y1 - 2020 U6 - http://dx.doi.org/10.1007/s11081-020-09553-4 SN - 1573-2924 VL - 2021 IS - 22 SP - 643 EP - 686 PB - Springer ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - CHAP A1 - Stenger, David A1 - Altherr, Lena A1 - Müller, Tankred A1 - Pelz, Peter F. T1 - Product family design optimization using model-based engineering techniques T2 - Operations Research Proceedings 2017 N2 - Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products. Y1 - 2018 SN - 978-3-319-89919-0 U6 - http://dx.doi.org/10.1007/978-3-319-89920-6_66 SP - 495 EP - 502 PB - Springer CY - Cham ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems T2 - FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems N2 - The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs. Y1 - 2018 N1 - International Conference on Fan Noise, Aerodynamics, Applications and Systems 18-20.04.2018 Darmstadt, Deutschland SP - 1 EP - 12 ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming T2 - Operations Research Proceedings 2017 N2 - The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design. KW - Engineering optimization KW - Global optimization KW - Energy efficiency KW - Water KW - Network Y1 - 2018 SN - 978-3-319-89919-0 U6 - http://dx.doi.org/10.1007/978-3-319-89920-6_63 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. ED - Jacobs, Georg T1 - Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterstützung bei der Auslegung von Getrieben für Kraftfahrzeuge T2 - Antriebstechnisches Kolloquium ATK 2017 Y1 - 2017 SN - 9783743148970 N1 - Antriebstechnisches Kolloquium ATK 2017, 07.03-08.03.2017. Aachen, Deutschland SP - 313 EP - 325 ER - TY - CHAP A1 - Rausch, Lea A1 - Friesen, John A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Kliewer, Natalia ED - Ehmke, Jan Fabian ED - Borndörfer, Ralf T1 - Using mixed-integer programming for the optimal design of water supply networks for slums T2 - Operations Research Proceedings 2017 N2 - The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh. Y1 - 2018 SN - 978-3-319-89919-0 (Print) SN - 978-3-319-89920-6 (Online) U6 - http://dx.doi.org/10.1007/978-3-319-89920-6_68 N1 - International Conference of the German Operations Research Society (GOR), Freie Universiät Berlin, Germany, September 6-8, 2017. SP - 509 EP - 516 PB - Springer CY - Cham ER - TY - CHAP A1 - Rausch, Lea A1 - Leise, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Papadrakakis, M. ED - Ppadopoulos, V. ED - Stefanou, G. ED - Plevris, V. T1 - A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem T2 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering N2 - Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art. KW - Technical Operations Research KW - Mixed-Integer Nonlinear Optimisation KW - Solver Per- formance KW - Drinking Water Supply KW - System Design Problem Y1 - 2016 SN - 978-618-82844-0-1 N1 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, 5–10 June 2016.Crete Island, Greece SP - 8509 EP - 8527 ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. A1 - Pöttgen, Philipp ED - Lübbecke, Marco ED - Koster, Arie ED - Letmathe, Peter ED - Madlener, Reihard ED - Peis, Britta ED - Walther, Grit T1 - Experimental validation of an enhanced system synthesis approach JF - Operations Research Proceedings 2014 N2 - Planning the layout and operation of a technical system is a common task for an engineer. Typically, the workflow is divided into consecutive stages: First, the engineer designs the layout of the system, with the help of his experience or of heuristic methods. Secondly, he finds a control strategy which is often optimized by simulation. This usually results in a good operating of an unquestioned sys- tem topology. In contrast, we apply Operations Research (OR) methods to find a cost-optimal solution for both stages simultaneously via mixed integer program- ming (MILP). Technical Operations Research (TOR) allows one to find a provable global optimal solution within the model formulation. However, the modeling error due to the abstraction of physical reality remains unknown. We address this ubiq- uitous problem of OR methods by comparing our computational results with mea- surements in a test rig. For a practical test case we compute a topology and control strategy via MILP and verify that the objectives are met up to a deviation of 8.7%. Y1 - 2014 SN - 978-3-319-28695-2 U6 - http://dx.doi.org/10.1007/978-3-319-28697-6_1 PB - Springer CY - Basel ER - TY - JOUR A1 - Vergé, Angela A1 - Pöttgen, Philipp A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pelz, Peter F. ED - Greuloch, Ivo ED - Weber, Manfred ED - Meier, Miles T1 - Lebensdauer als Optimierungsziel: Algorithmische Struktursynthese am Beispiel eines hydrostatischen Getriebes JF - O+P – Ölhydraulik und Pneumatik N2 - Verfügbarkeit und Nachhaltigkeit sind wichtige Anforderungen bei der Planung langlebiger technischer Systeme. Meist werden bei Lebensdaueroptimierungen lediglich einzelne Komponenten vordefinierter Systeme untersucht. Ob eine optimale Lebensdauer eine gänzlich andere Systemvariante bedingt, wird nur selten hinterfragt. Technical Operations Research (TOR) erlaubt es, aus Obermengen technischer Systeme automatisiert die lebensdaueroptimale Systemstruktur auszuwählen. Der Artikel zeigt dies am Beispiel eines hydrostatischen Getriebes. Y1 - 2016 SN - 1614-9602 VL - 60 IS - 1-2 SP - 114 EP - 121 PB - Vereinigte Fachverl. CY - Mainz ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Schänzle, Christian A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Algorithmic system design using scaling and affinity laws T2 - Operations Research Proceedings 2015 N2 - Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem. KW - Optimal Topology KW - Piecewise Linearization KW - Ventilation System KW - Similarity Theory Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - http://dx.doi.org/10.1007/978-3-319-42902-1 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 605 EP - 611 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Vergé, Angela A1 - Pelz, Peter F. T1 - Algorithmische Struktursynthese eines hydrostatischen Getriebes T2 - Antriebssysteme 2015 : Elektrik, Mechanik, Fluidtechnik in der Anwendung Y1 - 2015 SN - 978-3-18-092268-3 N1 - Antriebssysteme 2015 - Elektrik, Mechanik, Fluidtechnik in der Anwendung. VDI/VDE-Fachtagung. 11.11.15-12.11.15, Aachen. Veröffentlicht in der Reihe VDI-Berichte, Bandnummer 2268. SP - 145 EP - 155 PB - VDI-Verlag CY - Düsseldorf ER - TY - CHAP A1 - Schänzle, Christian A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - As good as it can be: Ventilation system design by a combined scaling and discrete optimization method T2 - Proceedings of FAN 2015 N2 - The understanding that optimized components do not automatically lead to energy-efficient systems sets the attention from the single component on the entire technical system. At TU Darmstadt, a new field of research named Technical Operations Research (TOR) has its origin. It combines mathematical and technical know-how for the optimal design of technical systems. We illustrate our optimization approach in a case study for the design of a ventilation system with the ambition to minimize the energy consumption for a temporal distribution of diverse load demands. By combining scaling laws with our optimization methods we find the optimal combination of fans and show the advantage of the use of multiple fans. Y1 - 2015 N1 - Proceedings of FAN 2015, Lyon (France), 15 – 17 April 2015 SP - 1 EP - 11 ER - TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Developing a control strategy for booster stations under uncertain load JF - Applied Mechanics and Materials N2 - Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy. KW - Technical Operations Research (TOR) KW - Booster Station KW - Pump System KW - Discrete Optimization Y1 - 2015 SN - 1662-7482 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.241 N1 - Ebenfalls weltweit einsehbar unter: http://wl.fst.tu-darmstadt.de/wl/publications/paper_151123_SFB805_ ICUME_Developing_a_Control_Strategy_for_Booster_Stations_under_Uncertain_Load_poettgen_ederer_pelz_altherr.pdf VL - 807 IS - 807 SP - 241 EP - 246 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Examination and optimization of a heating circuit for energy-efficient buildings JF - Energy Technology N2 - The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortström reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings. KW - energy transfer KW - heating system KW - programming KW - system optimization KW - technical operations research Y1 - 2015 SN - 2194-4296 U6 - http://dx.doi.org/10.1002/ente.201500252 VL - 4 IS - 1 SP - 136 EP - 144 PB - WILEY-VCH Verlag CY - Weinheim ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Farnetane, Lucas S. A1 - Pöttgen, Philipp A1 - Vergé, Angela A1 - Pelz, Peter F. T1 - Multicriterial design of a hydrostatic transmission system via mixed-integer programming T2 - Operations Research Proceedings 2015 N2 - In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system’s reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system. Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - http://dx.doi.org/10.1007/978-3-319-42902-1_41 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 301 EP - 307 PB - Springer CY - Cham ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pöttgen, Philipp A1 - Lorenz, Ulf A1 - Pelz, Peter F. ED - Pelz, Peter F. ED - Groche, Peter T1 - Multicriterial optimization of technical systems considering multiple load and availability scenarios JF - Applied Mechanics and Materials N2 - Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue. KW - sustainability KW - availability KW - energy efficiency KW - mixed-integer linear programming KW - system synthesis Y1 - 2015 SN - 1660-9336 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.247 VL - 807 SP - 247 EP - 256 ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Resilience enhancement of critical infrastructure – graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt T2 - 14th WCEAM Proceedings N2 - Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS. KW - Resilient infrastructure KW - Resilience assessment KW - Resilience metric graph theory KW - Water distribution system KW - Case study Y1 - 2020 SN - 978-3-030-64228-0 SN - 978-3-030-64227-3 U6 - http://dx.doi.org/10.1007/978-3-030-64228-0_13 N1 - 14th WCEAM Proceedings. World Congress on Engineering Asset Management, 28-31 July 2019, Singapore Part of the Lecture Notes in Mechanical Engineering book series (LNME) SP - 137 EP - 149 PB - Springer CY - Cham ER -