TY - CHAP A1 - Pfaff, Raphael A1 - Moshiri, Amir A1 - Reich, Alexander A1 - Gäbel, Markus T1 - Modelling of the effect of sanding on the wheel-rail adhesion area T2 - First International Conference on Rail Transportation Y1 - 2017 N1 - 2017 ICRT; International Conference on Rail Transportation <1, 2017, Chengdu, China> SP - 1 EP - 7 ER - TY - CHAP A1 - Shahidi, Parham A1 - Pfaff, Raphael A1 - Enning, Manfred T1 - The connected wagon - a concept for the integration of vehicle side sensors and actors with cyber physical representation for condition based maintenance T2 - First International Conference on Rail Transportation Y1 - 2017 N1 - 2017 ICRT; International Conference on Rail Transportation <1, 2017, Chengdu, China> SP - 1 EP - 8 ER - TY - CHAP A1 - Pfaff, Raphael A1 - Shahidi, Parham A1 - Enning, Manfred T1 - Connected freight rail rolling stock: a modular approach integrating sensors, actors and cyber physical systems for operational advantages and condition based maintenance T2 - Asia-Pacific Conference of the Prognostics and Health Management Society Y1 - 2017 N1 - Asia-Pacific Conference of the Prognostics and Health Management Society, Jeju, Korea 2017 SP - 1 EP - 7 ER - TY - CHAP A1 - Pfaff, Raphael T1 - Analysis of Big Data Streams to obtain Braking Reliability Information for Train Protection systems T2 - Asia-Pacific Conference of the Prognostics and Health Management Society Y1 - 2017 N1 - Asia-Pacific Conference of the Prognostics and Health Management Society, Jeju, Korea 2017 SP - 1 EP - 7 ER - TY - CHAP A1 - Pfaff, Raphael A1 - Schmidt, Bernd A1 - Wilbring, Daniela A1 - Franzen, Julian T1 - Wagon4.0 – the smart wagon for improved integration into Industry 4.0 plants T2 - Proceedings of the International Heavy Haul Association STS Conference 2019 N2 - In many instances, freight vehicles exchange load or information with plants that are or will soon be Industry4.0 plants. The Wagon4.0 concept, as developed in close cooperation with e.g. port or mine operations, offers a maximum in railway operational efficiency while providing strong business cases already in the respective plant interaction. The Wagon4.0 consists of main components, a power supply, data network, sensors, actuators and an operating system, the so called WagonOS. The Wagon OS is implemented in a granular, self-sufficient manner, to allow basic features such as WiFi-Mesh and train christening in remote areas without network connection. Furthermore, the granularity of the operating system allows to extend the familiar app concept to freight rail rolling stock, making it possible to use specialised actuators for certain applications, e.g. an electrical parking brake or an auxiliary drive. In order to facilitate migration to the Wagon4.0 for existing fleets, a migration concept featuring five levels of technical adaptation was developed. The present paper investigates the benefits of Wagon4.0-implementations for the particular challenges of heavy haul operations by focusing on train christening, ep-assisted braking, autonomous last mile and traction boost operation as well as improved maintenance schedules Y1 - 2019 N1 - International Heavy Haul Association STS Conference, 10th to 14th June 2019, Narvik, Norway ER -