TY - CHAP A1 - Franzen, Julian A1 - Stecken, Jannis A1 - Pfaff, Raphael A1 - Kuhlenkötter, Bernd T1 - Using the Digital Shadow for a Prescriptive Optimization of Maintenance and Operation : The Locomotive in the Context of the Cyber-Physical System T2 - Advances in Production, Logistics and Traffic N2 - In competition with other modes of transport, rail freight transport is looking for solutions to become more attractive. Short-term success can be achieved through the data-driven optimization of operations and maintenance as well as the application of novel strategies such as prescriptive maintenance. After introducing the concept of prescriptive maintenance, this paper aims to prove that vehicle-focused applications of this approach indeed have the potential to increase attractiveness. However, even greater advantages can be activated if data from the horizontal network of the vehicle is available. Drawing on the state of the art in research and technology in the field of cyber-physical systems (CPS) as well as digital twins and shadows, our work serves to design a system of systems for the horizontal interconnection of a rail vehicle and to conceptualize a draft for a digital twin of a locomotive. Y1 - 2019 SN - 978-3-030-13535-5 U6 - https://doi.org/10.1007/978-3-030-13535-5_19 SP - 265 EP - 276 PB - Springer CY - Cham ER - TY - CHAP A1 - Pfaff, Raphael A1 - Schmidt, Bernd A1 - Wilbring, Daniela A1 - Franzen, Julian T1 - Wagon4.0 – the smart wagon for improved integration into Industry 4.0 plants T2 - Proceedings of the International Heavy Haul Association STS Conference 2019 N2 - In many instances, freight vehicles exchange load or information with plants that are or will soon be Industry4.0 plants. The Wagon4.0 concept, as developed in close cooperation with e.g. port or mine operations, offers a maximum in railway operational efficiency while providing strong business cases already in the respective plant interaction. The Wagon4.0 consists of main components, a power supply, data network, sensors, actuators and an operating system, the so called WagonOS. The Wagon OS is implemented in a granular, self-sufficient manner, to allow basic features such as WiFi-Mesh and train christening in remote areas without network connection. Furthermore, the granularity of the operating system allows to extend the familiar app concept to freight rail rolling stock, making it possible to use specialised actuators for certain applications, e.g. an electrical parking brake or an auxiliary drive. In order to facilitate migration to the Wagon4.0 for existing fleets, a migration concept featuring five levels of technical adaptation was developed. The present paper investigates the benefits of Wagon4.0-implementations for the particular challenges of heavy haul operations by focusing on train christening, ep-assisted braking, autonomous last mile and traction boost operation as well as improved maintenance schedules Y1 - 2019 N1 - International Heavy Haul Association STS Conference, 10th to 14th June 2019, Narvik, Norway ER - TY - JOUR A1 - Pfaff, Raphael A1 - Enning, Manfred A1 - Sutter, Stefan T1 - A risk‑based approach to automatic brake tests for rail freight service: incident analysis and realisation concept JF - SN Applied Sciences N2 - This study reviews the practice of brake tests in freight railways, which is time consuming and not suitable to detect certain failure types. Public incident reports are analysed to derive a reasonable brake test hardware and communication architecture, which aims to provide automatic brake tests at lower cost than current solutions. The proposed solutions relies exclusively on brake pipe and brake cylinder pressure sensors, a brake release position switch as well as radio communication via standard protocols. The approach is embedded in the Wagon 4.0 concept, which is a holistic approach to a smart freight wagon. The reduction of manual processes yields a strong incentive due to high savings in manual labour and increased productivity. KW - Freight rail KW - Brake test KW - Incident analysis KW - Train composition KW - Brake set-up Y1 - 2022 U6 - https://doi.org/10.1007/s42452-022-05007-x SN - 2523-3971 N1 - Corresponding author: Raphael Pfaff VL - 4 IS - 4 SP - 1 EP - 14 PB - Springer CY - Cham ER - TY - JOUR A1 - Pfaff, Raphael T1 - Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach JF - Railway Engineering Science N2 - The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes. KW - Freight rail KW - Shunting KW - Braking curves KW - Brake set-up KW - Driver assistance system Y1 - 2023 U6 - https://doi.org/10.1007/s40534-023-00303-7 SN - 2662-4753 (eISSN) SN - 2662-4745 (Print) VL - 31 IS - 2 SP - 135 EP - 144 PB - SpringerOpen ER -