TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Ashikaga, Mitsugu A1 - Yamaguchi, Masato A1 - Ogino, Tomoyuki A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine T2 - Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A) N2 - Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 % O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 % hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 % O2, and 60 %RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 % compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues. KW - industrial gas turbine KW - combustor development KW - fuels KW - hydrogen KW - emission Y1 - 2022 SN - 978-0-7918-8599-4 U6 - https://doi.org/10.1115/GT2022-81620 N1 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition June 13–17, 2022 Rotterdam, Netherlands PB - American Society of Mechanical Engineers CY - Fairfield ER - TY - CHAP A1 - Aoki, Shigeki A1 - Uto, Takahiro A1 - Takahashi, Nobuaki A1 - Okada, Kunio A1 - Kroniger, Daniel A1 - Kamiya, Hiromu A1 - Yamaguchi, Masato A1 - Ishimura, Yuki A1 - Wirsum, Manfred A1 - Funke, Harald H.-W. A1 - Kusterer, Karsten T1 - Development of hydrogen and micromix combustor for small and medium size gas turbine of Kawasaki T2 - Turbo Expo: Power for Land, Sea and Air : Volume 2: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels N2 - Kawasaki (KHI) has made various improvements and commercialized hydrogen gas turbines for existing diffusion combustors (0–100 vol.% H2, wet combustion) and lean pre-mixed DLE combustors (0–30 vol.% H2). However, it is challenging for conventional combustion technology to achieve dry low NOx emissions for 100 vol.% hydrogen. Kawasaki’s unique approach is the development of a new dry combustion technology for high hydrogen content fuel: the micromix (MMX) combustion. Kawasaki established this combustion technology to achieve low NOx for 100 vol.% hydrogen combustion. Micromix is based on a large number of miniaturized non-premixed-type flames, making this concept inherently safe toward flashback. Recently, Kawasaki has commercialized a gas turbine with a micromix combustor as the world’s first dry gas turbine capable for 100 vol.% hydrogen. This paper shows the latest improvements of the micromix combustor before the commercialization with focus on NOx reduction achieved by decreasing the fuel injection hole diameter, and the extension of the operational flexibility by applying a supplemental burner system. During demonstration tests with a 1.8 MWel gas turbine, it could be proven that this novel combustion concept meets Japan’s fundamental NOx regulations (84 ppm referred to 15 vol.% residual O2) for pure hydrogen and furthermore can be operated with natural gas/hydrogen blends in the range up to 50 vol.% H2 over the entire load range. KW - industrial gas turbine KW - combustor development KW - engine commercialization KW - fuels KW - hydrogen Y1 - 2024 SN - 978-0-7918-8793-6 U6 - https://doi.org/10.1115/GT2024-121073 N1 - ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. London, United Kingdom, June 24–28, 2024 PB - ASME CY - New York, NY ER -