TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros T1 - Perspektiven für Solarthermische Kraftwerke im Sonnengürtel T2 - Energiewende : Aspekte, Optionen, Herausforderungen : Vorträge auf der DPG-Frühjahrstagung Arbeitskreis Energie in der Deutschen Physikalischen Gesellschaft Berlin, 26. bis 28. März 2012 / hrsg. von Hardo Bruhns Y1 - 2012 SP - 81 EP - 93 PB - DPG CY - Baf Honnef ER - TY - CHAP A1 - Fricke, Barbara A1 - Ziolko, C. A1 - Anthrakidis, Anette A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Giese, F. A1 - Dillig, M. T1 - InnoSol - environmental aspects of the open volumetric receiver technology T2 - 30th ISES Biennial Solar World Congress 2011 : : Kassel, Germany, 28 August - 2 September 2011. Vol. 5 Y1 - 2012 SP - 3895 EP - 3900 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Kronhardt, Valentina A1 - Alexopoulos, Spiros A1 - Reißel, Martin A1 - Latzke, Markus A1 - Rendon, C. A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf T1 - Simulation of operational management for the Solar Thermal Test and Demonstration Power Plant Jülich using optimized control strategies of the storage system T2 - Energy procedia Y1 - 2015 SN - 1876-6102 SP - 1 EP - 6 ER - TY - JOUR A1 - Kronhardt, Valentina A1 - Alexopoulos, Spiros A1 - Reißel, Martin A1 - Sattler, Johannes Christoph A1 - Hoffschmidt, Bernhard A1 - Hänel, Matthias A1 - Doerbeck, Till T1 - High-temperature thermal storage system for solar tower power plants with open-volumetric air receiver simulation and energy balancing of a discretized model JF - Energy procedia N2 - This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. The air mass flow distribution is controlled by valves, and the mass flow by two blowers. The thermal storage operation strategy has a direct and significant impact on the energetic and economic efficiency of the solar tower power plants. Y1 - 2014 U6 - https://doi.org/10.1016/j.egypro.2014.03.094 SN - 1876-6102 (E-Journal) ; 1876-6102 (Print) VL - 49 SP - 870 EP - 877 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Analysis of volumetric solar radiation absorbers made of wire meshes T2 - AIP Conference Proceedings Y1 - 2019 U6 - https://doi.org/10.1063/1.5117521 SN - 0094243X VL - 2126 SP - 030009-1 EP - 030009-6 ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus T1 - High concentration solar collectors T2 - Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this chapter, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Fresnel collector KW - Optical and thermal analysis KW - Solar concentration Y1 - 2012 SN - 978-0-08-087873-7 U6 - https://doi.org/10.1016/B978-0-08-087872-0.00306-1 VL - 3 SP - 165 EP - 209 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Fluid flow in porous ceramic multichannel crossflower filter modules Y1 - 2007 PB - COMSOL Inc. CY - Burlington, Mass. ER - TY - CHAP A1 - Vaeßen, Christiane A1 - Alexopoulos, Spiros A1 - Kluczka, Sven A1 - Sattler, Johannes Christoph A1 - Roeb, M. A1 - Neises, M. A1 - Abdellatif, T. T1 - Analyse der Verfahren zur solaren Methanolproduktion aus CO2 T2 - Forschung und Entwicklung für solarthermische Kraftwerke : 14. Kölner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus Jülich der FH Aachen : Kurzfassungen der Vorträge und Poster Y1 - 2011 SP - 2 S. PB - DLR CY - Köln ER - TY - CHAP A1 - Latzke, Markus A1 - Alexopoulos, Spiros A1 - Kronhardt, Valentina A1 - Rendón, Carlos A1 - Sattler, Johannes Christoph T1 - Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver T2 - Energy Procedia Y1 - 2015 U6 - https://doi.org/10.1016/j.egypro.2015.03.142 SN - 1876-6102 N1 - International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014, Beijing, China SP - 1327 EP - 1334 ER - TY - CHAP A1 - Fricke, Barbara A1 - Ziolko, C. A1 - Anthrakidis, Anette A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Dillig, M. A1 - Giese, F. T1 - InnoSol - life cycle analysis of solar power tower plants T2 - SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain Y1 - 2011 CY - Granada ER - TY - CHAP A1 - Atmane, Ilias A1 - Hirech, Kamal A1 - Kassmi, K. A1 - Mahdi, Zahra A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, H. A1 - Bachiri, N. ED - Omrane, Amina ED - Kassmi, Khalil ED - Akram, Muhammad Wasim ED - Khanna, Ashish ED - Mostafiz, Imtiaz T1 - Design and realization of a pilot solar desalination plant in Douar El Hamri in the province of Berkane (Morocco) T2 - Sustainable entrepreneurship, renewable energy-based projects, and digitalization N2 - Producing fresh water from saline water has become one of the most difficult challenges to overcome especially with the high demand and shortage of fresh water. In this context, as part of a collaboration with Germany, the authors propose a design and implementation of a pilot multi-stage solar desalination system (MSD), remotely controlled, at Douar Al Hamri in the rural town of Boughriba in the province of Berkane, Morocco. More specifically, they present their contribution on the remote control and supervision system, which makes the functioning of the MSD system reliable and guarantees the production of drinking water for the population of Douar. The results obtained show that the electronic cards and computer communication software implemented allow the acquisition of all electrical (currents, voltages, powers, yields), thermal (temperatures of each stage), and meteorological (irradiance and ambient temperature), remote control and maintenance (switching on, off, data transfer). By comparing with the literature carried out in the field of solar energy, the authors conclude that the MSD and electronic desalination systems realized during this work represent a contribution in terms of the reliability and durability of providing drinking water in rural and urban areas. Y1 - 2020 SN - 9781000292541 (E-Book) SN - 9781003097921 (E-Book) SN - 9780367468378 (Hardcover) PB - CRC Press CY - Boca Raton, Fa. ER - TY - CHAP A1 - Alexopoulos, Spiros A1 - Breitbach, Gerd A1 - Hoffschmidt, Bernhard T1 - Optimization of the channel form geometry of porous ReSiC ceramic membrane modules T2 - Proceedings / International Conference & Exhibition for Filtration and Separation Technology, FILTECH 2009 : October 13 - 15, 2009, Wiesbaden, Germany. Vol. 2 Y1 - 2009 SN - 978-3-941655-36-2 SP - 686 EP - 693 PB - Filtech Exhibitions Germany CY - Meerbusch ER - TY - CHAP A1 - Ahlbrink, Nils A1 - Alexopoulos, Spiros A1 - Andersson, Joel A. E. A1 - Belhomme, B. A1 - Teixeira Boura, Cristiano José A1 - Gall, Jan A1 - Hirsch, Tobias T1 - viCERP - the Virtual Institute of Central Receiver Power Plant T2 - MATHMOD 2009 - 6th Vienna International Conference on Mathematical Modelling : February 11 - 13, 2009, Vienna, Austria. ARGESIM Report. No. 35 Y1 - 2009 SN - 978-3-901608-35-3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Advances in solar tower technology JF - Wiley interdisciplinary reviews : Energy and Environment : WIREs Y1 - 2017 U6 - https://doi.org/10.1002/wene.217 SN - 2041-840X VL - 6 IS - 1 SP - 1 EP - 19 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Alexopoulos, Spiros T1 - Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln JF - Applied Thermal Engineering Y1 - 2015 U6 - https://doi.org/10.1016/j.applthermaleng.2015.01.007 SN - 1359-4311 N1 - Autor im Original: Spiridon O. Alexopoulos VL - 78 SP - 387 EP - 396 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alexopoulos, Spiros T1 - Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure JF - Journal of Engineering Science and Technology Review N2 - Two of the main environmental problems of today’s society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air’s heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100% from renewable energy sources Y1 - 2012 SN - 1791-2377 N1 - Special Issue on Renewable Energy Systems VL - 5 IS - 4 SP - 48 EP - 55 ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings N2 - In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10%, and in the quantity of water produced by a factor of 3. Y1 - 2021 U6 - https://doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 N1 - The Fourth edition of the International Conference on Materials & Environmental Science (ICMES 2020), virtual conference, November 18-28, 2020, Morocco VL - 45 IS - 8 SP - 7653 EP - 7660 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Alexopoulos, Spiros T1 - Biomass technology and bio-fuels: Heating/cooling and power T2 - Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani Y1 - 2013 SN - 9781624177415 SP - 501 EP - 523 PB - Nova Science Publ. CY - Hauppauge, NY ER - TY - CHAP A1 - Alexopoulos, Spiros A1 - Kluczka, Sven A1 - Vaeßen, Christiane A1 - Roeb, M. A1 - Neises, M. T1 - Scenario development for efficient methanol production using CO2 and solar energy T2 - Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012 Y1 - 2012 SP - ID 99 CY - Rijeka ER - TY - JOUR A1 - Göttsche, Joachim A1 - Alexopoulos, Spiros A1 - Dümmler, Andreas A1 - Maddineni, S. K. T1 - Multi-Mirror Array Calculations With Optical Error N2 - The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles. KW - solar process heat KW - concentrating collector KW - raytracing KW - point-focussing system Y1 - 2019 SP - 1 EP - 6 ER -