TY - GEN A1 - Jung, Alexander A1 - Müller, Wolfram A1 - Staat, Manfred T1 - Corrigendum to “Wind and fairness in ski jumping: A computer modelling analysis” [J. Biomech. 75 (2018) 147–153] T2 - Journal of Biomechanics Y1 - 2021 U6 - https://doi.org/10.1016/j.jbiomech.2021.110690 SN - 0021-9290 N1 - Refers to: Alexander Jung, Wolfram Müller, Manfred Staat: Wind and fairness in ski jumping: A computer modelling analysis. Journal of Biomechanics, Volume 75. 25 June 2018. Pages 147-153. https://doi.org/10.1016/j.jbiomech.2018.05.001 VL - 128 IS - Article number: 110690 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jung, Alexander A1 - Staat, Manfred T1 - Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002] JF - GAMM-Mitteilungen Y1 - 2020 U6 - https://doi.org/10.1002/gamm.202000011 SN - 1522-2608 N1 - Refers to: Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue. Alexander Jung, Manfred Staat. Volume 42, Issue 4. GAMM-Mitteilungen, 2019. https://doi.org/10.1002/gamm.201900002 VL - 43 IS - 4 PB - Wiley-VCH GmbH CY - Weinheim ER - TY - JOUR A1 - Ciritsis, Alexander A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kuhl, Christiane K. A1 - Kraemer, Nils Andreas T1 - Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo JF - Journal of Biomedical Materials Research: Part B: Applied Biomaterials N2 - Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4% for TPU and of 1.2% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827–833, 2018. Y1 - 2018 U6 - https://doi.org/10.1002/jbm.b.33877 SN - 1552-4981 VL - 106 IS - 2 SP - 827 EP - 833 PB - Wiley CY - New York, NY ER - TY - JOUR A1 - Hackl, Michael A1 - Wegmann, Kilian A1 - Kahmann, Stephanie Lucina A1 - Heinze, Nicolai A1 - Staat, Manfred A1 - Neiss, Wolfram F. A1 - Scaal, Martin A1 - Müller, Lars P. T1 - Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow JF - Knee Surgery, Sports Traumatology, Arthroscopy Y1 - 2017 U6 - https://doi.org/10.1007/s00167-017-4468-z SN - 1433-7347 VL - 25 IS - 7 SP - 2280 EP - 2288 PB - Springer CY - Berlin ER - TY - JOUR A1 - Horbach, Andreas A1 - Staat, Manfred T1 - Optical strain measurement for the modeling of surgical meshes and their porosity JF - Current Directions in Biomedical Engineering N2 - The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0045 SN - 2364-5504 VL - Band 4 IS - 1 SP - 181 EP - 184 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Computational comparison of different textile implants to correct apical prolapse in females JF - Current Directions in Biomedical Engineering N2 - Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient’s anatomical defect, intended function after reconstruction and most importantly the surgeon’s preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0159 VL - 4 IS - 1 SP - 661 EP - 664 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Keutmann, Sabine A1 - Staat, Manfred A1 - Laack, Walter van T1 - Untersuchung der thermischen Auswirkung von therapeutischem Ultraschall N2 - Zusammenfassung: In der Orthopädie zählt der therapeutische Ultraschall als Mittel zur Prävention und Therapiebegleitung. Er hat mechanische, thermische und physiko-chemische Auswirkungen auf den menschlichen Körper. Um mehr Erkenntnisse über die thermischen Auswirkungen zu erlangen, wurden Versuche an einem Hydrogel-Phantom und an Probanden durchgeführt. Dabei entstand eine signifikante Erwärmung des Gewebes, welche beim Probandenversuch an der Oberfläche und beim Hydrogelversuch in der Tiefe gemessen wurde. Summary: In orthopaedics, therapeutic ultrasound is a tool of prevention and therapy support. It has mechanical, thermal and physico-chemical effects on the human body. Tests with a hydrogel phantom and with human probands have been performed in order to obtain more knowledge about their thermal effects. Both tests measured temperature increases in cell tissue, on the surface with the human proband test and in depth with the hydrogel phantom test. T2 - Research about the thermal effects of therapeutic ultrasound Y1 - 2018 SN - 2193-5793 SN - 2193-5785 (Druckausgabe) VL - 7 IS - 10 SP - 518 EP - 522 PB - Deutscher Ärzte-Verl. CY - Köln ER - TY - GEN A1 - Topcu, Murat A1 - Madabhushi, Gopal Santana Phani A1 - Staat, Manfred T1 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster N2 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis (FEA) Y1 - 2022 U6 - https://doi.org/10.6084/m9.figshare.19333295.v2 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - CHAP A1 - Goh, Kheng Lim A1 - Topçu, Murat A1 - Madabhushi, Gopal S. P. A1 - Staat, Manfred ED - Maia, Fatima Raquel Azevedo ED - Miguel Oliveira, J. ED - Reis, Rui L. T1 - Collagen fibril reinforcement in connective tissue extracellular matrices T2 - Handbook of the extracellular matrix N2 - The connective tissues such as tendons contain an extracellular matrix (ECM) comprising collagen fibrils scattered within the ground substance. These fibrils are instrumental in lending mechanical stability to tissues. Unfortunately, our understanding of how collagen fibrils reinforce the ECM remains limited, with no direct experimental evidence substantiating current theories. Earlier theoretical studies on collagen fibril reinforcement in the ECM have relied predominantly on the assumption of uniform cylindrical fibers, which is inadequate for modelling collagen fibrils, which possessed tapered ends. Recently, Topçu and colleagues published a paper in the International Journal of Solids and Structures, presenting a generalized shear-lag theory for the transfer of elastic stress between the matrix and fibers with tapered ends. This paper is a positive step towards comprehending the mechanics of the ECM and makes a valuable contribution to formulating a complete theory of collagen fibril reinforcement in the ECM. KW - Connective tissues KW - Extracellular matrix (ECM) KW - Collagen fibrils KW - Mechanical stability KW - Tapered ends Y1 - 2023 SN - 978-3-030-92090-6 (Print) SN - 978-3-030-92090-6 (Online) U6 - https://doi.org/10.1007/978-3-030-92090-6_6-1 SP - 1 EP - 20 PB - Springer Nature CY - Cham ER -