TY - JOUR A1 - Rietsch, Stefan H. G. A1 - Brunheim, Sascha A1 - Orzada, Stephan A1 - Voelker, Maximilian N. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Gratz, Marcel A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine JF - Magnetic Resonance in Medicine Y1 - 2019 U6 - https://doi.org/10.1002/mrm.27731 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Orzada, Stephan A1 - Solbach, Klaus A1 - Gratz, Marcel A1 - Brunheim, Sascha A1 - Fiedler, Thomas M. A1 - Johst, Sören A1 - Bitz, Andreas A1 - Shooshtary, Samaneh A1 - Abuelhaija, Asjraf A1 - Voelker, Maximilian N. A1 - Rietsch, Stefan H. G. A1 - Kraff, Oliver A1 - Maderwald, Stefan A1 - Flöser, Martina A1 - Oehmingen, Mark A1 - Quick, Harald H. A1 - Ladd, Mark E. T1 - A 32-channel parallel transmit system add-on for 7T MRI JF - Plos one Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0222452 ER - TY - JOUR A1 - Rietsch, Stefan H. G. A1 - Pfaffenrot, Viktor A1 - Bitz, Andreas A1 - Orzada, Stephan A1 - Brunheim, Sascha A1 - Lazik-Palm, Andrea A1 - Theysohn, Jens M. A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Kraff, Oliver T1 - An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T JF - Medical Physics Y1 - 2017 U6 - https://doi.org/10.1002/mp.12612 SN - 0094-2405 IS - Article in press PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Schmidt, Simon A1 - Stelter, Jonathan K. A1 - Wittrich, Marco A1 - Quick, Harald H. A1 - Bitz, Andreas A1 - Ladd, Mark E. T1 - Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specificabsorption rate, tissue temperature, and thermal dose JF - NMR in Biomedicine N2 - In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil. KW - body imaging at 7 T MRI KW - thermal dose KW - tissue temperature KW - transmit antenna arrays Y1 - 2022 U6 - https://doi.org/10.1002/nbm.4656 SN - 0952-3480 (Print) SN - 1099-1492 (Online) VL - 35 IS - 5 SP - 1 EP - 17 PB - Wiley ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Orzada, Stephan A1 - Flöser, Martina A1 - Rietsch, Stefan H. G. A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T JF - NMR in Biomedicine N2 - The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study. KW - body imaging at UHF MRI KW - integrated transmit coil arrays KW - VOP compression Y1 - 2021 U6 - https://doi.org/10.1002/nbm.4515 SN - 0952-3480 (ISSN) SN - 1099-1492 (eISSN) VL - 34 IS - 7 PB - Wiley CY - Weinheim ER -