TY - JOUR A1 - Paschmann, Hans A1 - Schmidt, Stefan T1 - Mechanische Eigenschaften von Glasfasermixbeton. Wie viel Fasern braucht Beton? / Schmidt, Stefan; Paschmann, Hans JF - BFT Betonwerk + Fertigteil-Technik. 67 (2001), H. 10 Y1 - 2001 SN - 0373-4331 SP - 64 EP - 75 ER - TY - JOUR A1 - Kerres, Karsten A1 - Gredigk-Hoffmann, Sylvia A1 - Jathe, Rüdiger A1 - Orlik, Stefan A1 - Sariyildiz, Mustafa A1 - Schmidt, Torsten A1 - Sympher, Klaus-Jochen A1 - Uhlenbroch, Adrian T1 - Future approaches for sewer system condition assessment JF - Water Practice & Technology N2 - Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R&D cooperation project ‘SubKanS’ is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification. Y1 - 2020 U6 - https://doi.org/10.2166/wpt.2020.027 SN - 1751-231X IS - 15 (2) SP - 386 EP - 393 PB - IWA Publishing CY - London ER - TY - RPRT A1 - Geißler, Karsten A1 - Prokop, Ines A1 - Bubner, André A1 - Egner, Ralf A1 - Heyde, Stefan A1 - Kempkes, Marian A1 - Kühn, Bertram A1 - Laumann, Jörg A1 - Lieberwirth, Peter A1 - Naumes, Johannes A1 - Ruga, Julija A1 - Schilling, Sivo A1 - Schmidt, Herbert A1 - Ummenhofer, Thomas T1 - Verbesserung der Praxistauglichkeit der Baunormen durch pränormative Arbeit – Teilantrag 3: Stahlbau, Abschlussbericht Y1 - 2015 SN - 978-3-8167-9539-1 PB - Fraunhofer IRB Verlag CY - Stuttgart ER -