TY - CHAP A1 - Blaneck, Patrick Gustav A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Bialonski, Stephan T1 - Automatic readability assessment of german sentences with transformer ensembles T2 - Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text N2 - Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0:435. Y1 - 2022 U6 - http://dx.doi.org/10.48550/arXiv.2209.04299 N1 - Proceedings of the 18th Conference on Natural Language Processing/Konferenz zur Verarbeitung natürlicher Sprache (KONVENS 2022) 12-15 September, 2022 University of Potsdam Potsdam, Germany SP - 57 EP - 62 PB - Association for Computational Linguistics CY - Potsdam ER - TY - JOUR A1 - Kaulen, Lars A1 - Schwabedal, Justus T. C. A1 - Schneider, Jules A1 - Ritter, Philipp A1 - Bialonski, Stephan T1 - Advanced sleep spindle identification with neural networks JF - Scientific Reports N2 - Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model’s performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance. Y1 - 2022 U6 - http://dx.doi.org/10.1038/s41598-022-11210-y SN - 2045-2322 N1 - Corresponding author: Stephan Bialonski VL - 12 IS - Article number: 7686 SP - 1 EP - 10 PB - Springer Nature CY - London ER - TY - JOUR A1 - Röthenbacher, Annika A1 - Cesari, Matteo A1 - Doppler, Christopher E.J. A1 - Okkels, Niels A1 - Willemsen, Nele A1 - Sembowski, Nora A1 - Seger, Aline A1 - Lindner, Marie A1 - Brune, Corinna A1 - Stefani, Ambra A1 - Högl, Birgit A1 - Bialonski, Stephan A1 - Borghammer, Per A1 - Fink, Gereon R. A1 - Schober, Martin A1 - Sommerauer, Michael T1 - RBDtector: an open-source software to detect REM sleep without atonia according to visual scoring criteria JF - Scientific Reports N2 - REM sleep without atonia (RSWA) is a key feature for the diagnosis of rapid eye movement (REM) sleep behaviour disorder (RBD). We introduce RBDtector, a novel open-source software to score RSWA according to established SINBAR visual scoring criteria. We assessed muscle activity of the mentalis, flexor digitorum superficialis (FDS), and anterior tibialis (AT) muscles. RSWA was scored manually as tonic, phasic, and any activity by human scorers as well as using RBDtector in 20 subjects. Subsequently, 174 subjects (72 without RBD and 102 with RBD) were analysed with RBDtector to show the algorithm’s applicability. We additionally compared RBDtector estimates to a previously published dataset. RBDtector showed robust conformity with human scorings. The highest congruency was achieved for phasic and any activity of the FDS. Combining mentalis any and FDS any, RBDtector identified RBD subjects with 100% specificity and 96% sensitivity applying a cut-off of 20.6%. Comparable performance was obtained without manual artefact removal. RBD subjects also showed muscle bouts of higher amplitude and longer duration. RBDtector provides estimates of tonic, phasic, and any activity comparable to human scorings. RBDtector, which is freely available, can help identify RBD subjects and provides reliable RSWA metrics. Y1 - 2022 U6 - http://dx.doi.org/10.1038/s41598-022-25163-9 SN - 2045-2322 VL - 12 IS - Article number: 20886 SP - 1 EP - 14 PB - Springer Nature CY - London ER - TY - INPR A1 - Ringers, Christa A1 - Bialonski, Stephan A1 - Solovev, Anton A1 - Hansen, Jan N. A1 - Ege, Mert A1 - Friedrich, Benjamin M. A1 - Jurisch-Yaksi, Nathalie T1 - Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves T2 - bioRxiv N2 - Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping. Y1 - 2021 U6 - http://dx.doi.org/10.1101/2021.11.23.469646 N1 - Veröffentlicht in eLife 12:e77701 (https://doi.org/10.7554/eLife.77701). ER - TY - INPR A1 - Bornheim, Tobias A1 - Niklas, Grieger A1 - Blaneck, Patrick Gustav A1 - Bialonski, Stephan T1 - Preprint: Speaker attribution in German parliamentary debates with QLoRA-adapted large language models T2 - Journal for Language Technology and Computational Linguistics N2 - The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems. Y1 - 2023 U6 - http://dx.doi.org/10.48550/arXiv.2309.09902 N1 - Veröffentlichte Version verfügbar unter: https://doi.org/10.21248/jlcl.37.2024.244 ER - TY - JOUR A1 - Horstmann, Marie-Therese A1 - Bialonski, Stephan A1 - Noenning, Nina A1 - Mai, Heinke A1 - Prusseit, Jens A1 - Wellmer, Jörg A1 - Hinrichs, Hermann A1 - Lehnertz, Klaus T1 - State dependent properties of epileptic brain networks: Comparative graph–theoretical analyses of simultaneously recorded EEG and MEG JF - Clinical Neurophysiology N2 - Objective To investigate whether functional brain networks of epilepsy patients treated with antiepileptic medication differ from networks of healthy controls even during the seizure-free interval. Methods We applied different rules to construct binary and weighted networks from EEG and MEG data recorded under a resting-state eyes-open and eyes-closed condition from 21 epilepsy patients and 23 healthy controls. The average shortest path length and the clustering coefficient served as global statistical network characteristics. Results Independent on the behavioral condition, epileptic brains exhibited a more regular functional network structure. Similarly, the eyes-closed condition was characterized by a more regular functional network structure in both groups. The amount of network reorganization due to behavioral state changes was similar in both groups. Consistent findings could be achieved for networks derived from EEG but hardly from MEG recordings, and network construction rules had a rather strong impact on our findings. Conclusions Despite the locality of the investigated processes epileptic brain networks differ in their global characteristics from non-epileptic brain networks. Further methodological developments are necessary to improve the characterization of disturbed and normal functional networks. Significance An increased regularity and a diminished modulation capability appear characteristic of epileptic brain networks. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.clinph.2009.10.013 SN - 1388-2457 VL - 121 IS - 2 SP - 172 EP - 185 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bialonski, Stephan A1 - Horstmann, Marie-Therese A1 - Lehnertz, Klaus T1 - From brain to earth and climate systems: Small-world interaction networks or not? JF - Chaos: An Interdisciplinary Journal of Nonlinear Science N2 - We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization. Y1 - 2010 U6 - http://dx.doi.org/10.1063/1.3360561 SN - 1089-7682 VL - 20 IS - 1 PB - AIP Publishing CY - Melville, NY ER - TY - JOUR A1 - Bialonski, Stephan A1 - Wendler, Martin A1 - Lehnertz, Klaus T1 - Unraveling spurious properties of interaction networks with tailored random networks JF - Plos one N2 - We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. Y1 - 2011 U6 - http://dx.doi.org/10.1371/journal.pone.0022826 VL - 6 IS - 8 PB - Plos CY - San Francisco ER - TY - JOUR A1 - Kuhnert, Marie-Therese A1 - Bialonski, Stephan A1 - Noenning, Nina A1 - Mai, Heinke A1 - Hinrichs, Hermann A1 - Helmstaedter, Christoph A1 - Lehnertz, Klaus T1 - Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks JF - Plos one N2 - Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33 subjects during a neuropsychological test schedule. Analyzing the networks' global statistical properties we observe that intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel insights into the relationship between topological aspects of functional brain networks and higher cognitive functions. Y1 - 2013 U6 - http://dx.doi.org/10.1371/journal.pone.0080273 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER -