TY - JOUR A1 - Brockhaus, Moritz K. A1 - Behbahani, Mehdi A1 - Muris, Farina A1 - Jansen, Sebastian V. A1 - Schmitz- Rode, Thomas A1 - Steinseifer, Ulrich A1 - Clauser, Johanna C. T1 - In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept JF - Artificial Organs N2 - Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential. Y1 - 2021 U6 - http://dx.doi.org/10.1111/aor.14046 SN - 1525-1594 VL - 45 IS - 12 SP - 1513 EP - 1521 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Draack, Sebastian A1 - Viereck, Thilo A1 - Frank, A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications JF - IEEE Magnetic Letters N2 - Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23% for agglomerated MNP in suspension and a decrease by up to 28% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy. Y1 - 2018 U6 - http://dx.doi.org/10.1109/LMAG.2018.2879034 SN - 1949-307X VL - 9 IS - Article number 8519617 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Steinseifer, Ulrich A1 - Kashefi, Ali A1 - Hormes, Marcus A1 - Schoberer, Mark A1 - Orlikowsky, Thorsten A1 - Behbahani, Mehdi A1 - Behr, Marek A1 - Schmitz-Rode, Thomas T1 - Miniaturization of ECMO Systems : Engineering Challenges and Methods JF - Artificial Organs. 33 (2009), H. 5 Y1 - 2009 SN - 1525-1594 N1 - Fifth International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion Abstracts SP - A55 EP - A55 ER - TY - JOUR A1 - Slabu, Ioana A1 - Roeth, Anjali A. A1 - Engelmann, Ulrich M. A1 - Wiekhorst, Frank A1 - Buhl, Eva M. A1 - Neumann, Ulf P. A1 - Schmitz-Rode, Thomas T1 - Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro JF - Nanotechnology Y1 - 2019 U6 - http://dx.doi.org/10.1088/1361-6528/ab033e SN - 1361-6528 VL - 30 IS - 18 SP - 184004 ER -