TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Developing a control strategy for booster stations under uncertain load JF - Applied Mechanics and Materials N2 - Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy. KW - Technical Operations Research (TOR) KW - Booster Station KW - Pump System KW - Discrete Optimization Y1 - 2015 SN - 1662-7482 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.241 N1 - Ebenfalls weltweit einsehbar unter: http://wl.fst.tu-darmstadt.de/wl/publications/paper_151123_SFB805_ ICUME_Developing_a_Control_Strategy_for_Booster_Stations_under_Uncertain_Load_poettgen_ederer_pelz_altherr.pdf VL - 807 IS - 807 SP - 241 EP - 246 PB - Trans Tech Publications CY - Bäch ER - TY - JOUR A1 - Pöttgen, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Examination and optimization of a heating circuit for energy-efficient buildings JF - Energy Technology N2 - The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortström reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings. KW - energy transfer KW - heating system KW - programming KW - system optimization KW - technical operations research Y1 - 2015 SN - 2194-4296 U6 - http://dx.doi.org/10.1002/ente.201500252 VL - 4 IS - 1 SP - 136 EP - 144 PB - WILEY-VCH Verlag CY - Weinheim ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Farnetane, Lucas S. A1 - Pöttgen, Philipp A1 - Vergé, Angela A1 - Pelz, Peter F. T1 - Multicriterial design of a hydrostatic transmission system via mixed-integer programming T2 - Operations Research Proceedings 2015 N2 - In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system’s reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system. Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - http://dx.doi.org/10.1007/978-3-319-42902-1_41 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 301 EP - 307 PB - Springer CY - Cham ER - TY - JOUR A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pöttgen, Philipp A1 - Lorenz, Ulf A1 - Pelz, Peter F. ED - Pelz, Peter F. ED - Groche, Peter T1 - Multicriterial optimization of technical systems considering multiple load and availability scenarios JF - Applied Mechanics and Materials N2 - Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue. KW - sustainability KW - availability KW - energy efficiency KW - mixed-integer linear programming KW - system synthesis Y1 - 2015 SN - 1660-9336 U6 - http://dx.doi.org/10.4028/www.scientific.net/AMM.807.247 VL - 807 SP - 247 EP - 256 ER - TY - CHAP A1 - Schänzle, Christian A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Pelz, Peter T1 - TOR – Towards the energetically optimal ventilation system KW - Energy KW - Efficiency KW - Ventilation System KW - Discrete Optimisation KW - TGA Y1 - 2015 N1 - EST 2015, Karlsruhe, 19-21 Mai 2015 ER -