TY - CHAP A1 - Gömmel, Andreas A1 - Niendorf, Thoralf A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Butenweg, Christoph A1 - Kob, Malte T1 - 3D vocal fold geometry mapping using Magnetic Resonance Imaging T2 - Fortschritte der Akustik : 36. Deutsche Jahrestagung für Akustik, Band 1 Y1 - 2010 SN - 978-3-9808659-8-2 N1 - Fortschritte der Akustik : 36. Deutsche Jahrestagung für Akustik ; 15.-18. März 2010, Berlin SP - 271 EP - 272 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - CHAP A1 - Frauenrath, Tobias A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Otten, Mario A1 - Niendorf, Thoralf T1 - 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T T2 - ISMRM-ESMRMB joint annual meeting 2010, Band 4 Y1 - 2010 SN - 978-1-617-82008-3 N1 - ISMRM-ESMRMB joint annual meeting 2010 : Stockholm, Sweden, 1 - 7 May 2010 SP - 3087 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Gömmel, Andreas A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Niendorf, Thoralf A1 - Butenweg, Christoph ED - Möser, Michael ED - Schulte-Fortkamp, Brgitte ED - Ochmann, Martin T1 - In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging T2 - Fortschritte der Akustik - DAGA 2010, 36. Jahrestagung für Akustik Y1 - 2010 SN - 978-3-9808659-8-2 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - CHAP A1 - Altherr, Lena A1 - Conzen, Max A1 - Elsen, Ingo A1 - Frauenrath, Tobias A1 - Lyrmann, Andreas ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Sensor retrofitting of existing buildings in an interdisciplinary teaching project at university level T2 - Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel N2 - Existing residential buildings have an average lifetime of 100 years. Many of these buildings will exist for at least another 50 years. To increase the efficiency of these buildings while keeping costs at reasonable rates, they can be retrofitted with sensors that deliver information to central control units for heating, ventilation and electricity. This retrofitting process should happen with minimal intervention into existing infrastructure and requires new approaches for sensor design and data transmission. At FH Aachen University of Applied Sciences, students of different disciplines work together to learn how to design, build, deploy and operate such sensors. The presented teaching project already created a low power design for a combined CO2, temperature and humidity measurement device that can be easily integrated into most home automation systems KW - Building Automation KW - Smart Building KW - CO2 KW - Carbon Dioxide KW - Education Y1 - 2023 SN - 978-3-910103-01-6 U6 - https://doi.org/10.33968/2023.04 N1 - 19. AALE-Konferenz. Luxemburg, 08.03.-10.03.2023. BTS Connected Buildings & Cities Luxemburg (Tagungsband unter https://doi.org/10.33968/2023.01) SP - 31 EP - 40 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - https://doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Waiczies, Helmar A1 - Kühne, André A1 - Winter, Lukas A1 - Frauenrath, Tobias A1 - Hoffmann, Werner A1 - Ittermann, Bernd A1 - Waiczies, Sonia A1 - Niendorf, Thoralf T1 - Towards theranostics of rheumatoid arthritis: 1H/19F imaging of non-steroidal anti-inflammatory drugs in hand and wrist at 7 Tesla T2 - 2013 ISMRM Annual Meeting Proceedings N2 - We have developed a double-tuned ¹H/¹⁹F birdcage resonator dedicated for hand and wrist imaging at 7 T to locally image non-steroidal anti-inflammatory drugs (NSAID) such as 2-{[3-(Trifluoromethyl) phenyl]amino}benzoic acid. The preliminary in vivo images acquired by the double-tuned ¹H/¹⁹F birdcage resonator demonstrate the feasibility for ¹H/¹⁹F hand- and wrist-imaging at 7 T. While the diagnostic quality of the coil needs to be assessed in patients with inflammatory rheumatoid disease, first ¹⁹F images of the NSAID are encouraging, and point towards the prospect of applying ¹⁹F-MRI to visualize and quantify the concentration of therapeutically-active compound at the sites of inflammation. Y1 - 2013 SN - 1545-4428 N1 - ISMRM 21st Annual Meeting & Exhibition, 20-26 April 2013, Salt Lake City, Utah, USA ER - TY - GEN A1 - Lindel, Tomasz Dawid A1 - Greiser, Andreas A1 - Waxman, Patrick A1 - Dietterle, Martin A1 - Seifert, Frank A1 - Fontius, Ulrich A1 - Renz, Wolfgang A1 - Dieringer, Matthias A. A1 - Frauenrath, Tobias A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf A1 - Ittermann, Bernd T1 - Cardiac CINE MRI at 7 T using a transmit array T2 - 2012 ISMRM Annual Meeting Proceedings N2 - With its need for high SNR and short acquisition times, Cardiac MRI (CMR) is an intriguing target application for ultrahigh field MRI. Due to the sheer size of the upper torso, however, the known RF issues of 7T MRI are also most prominent in CMR. Recent years brought substantial progress but the full potential of the ultrahigh field for CMR is yet to be exploited. Parallel transmission (pTx) is a promising approach in this context and several groups have already reported B1 shimming for 7T CMR. In such a static pTx application amplitudes and phases of all Tx channels are adjusted individually but otherwise imaging techniques established in current clinical practice 1.5 T and 3 T are applied. More advanced forms of pTx as spatially selective excitation (SSE) using Transmit SENSE promise additional benefits like faster imaging with reduced fields of view or improved SAR control. SSE requires the full dynamic capabilities of pTx, however, and for the majority of today's implemented pTx hardware the internal synchronization of the Tx array does not easily permit external triggering as needed for CMR. Here we report a software solution to this problem and demonstrate the feasibility of CINE CMR at 7 T using a Tx array. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - CHAP A1 - Niendorf, Thoralf A1 - Winter, Lukas A1 - Frauenrath, Tobias ED - Millis, Richard T1 - Electrocardiogram in an MRI environment: Clinical needs, practical considerations, safety implications, technical solutions and fFuture directions T2 - Advances in Electrocardiograms - Methods and Analysis Y1 - 2012 SN - 978-953-307-923-3 (print) SN - 978-953-51-6762-4 (eBook) U6 - https://doi.org/10.5772/24340 SP - 309 EP - 324 PB - IntechOpen CY - London ER - TY - GEN A1 - Frauenrath, Tobias A1 - Pfeiffer, Harald A1 - Hezel, Fabian A1 - Dieringer, Matthias A. A1 - Winter, Lukas A1 - Gräßl, Andreas A1 - Santoro, Davide A1 - Özerdem, Celal A1 - Renz, Wolfgang A1 - Greiser, Andreas A1 - Niendorf, Thoralf T1 - Lessons learned from cardiac MRI at 7.0 T: LV function assessment at 3.0 T using local multi-channel transceiver coil arrays T2 - 2012 ISMRM Annual Meeting Proceedings N2 - Cardiac MR (CMR) is of proven clinical value but also an area of vigorous ongoing research since image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Recent developments of CMR at 7.0 T have been driven by pioneering explorations into novel multichannel transmit and receive coil array technology to tackle the challenges B1+-field inhomogeneities, to offset specific-absorption rate (SAR) constraints and to reduce banding artifacts in SSFP imaging. For this study, recognition of the benefits and performance of local surface Tx/Rx-array structures recently established at 7.0 T inspired migration to 3.0 T, where RF inhomogeneities and SAR limitations encountered in routine clinical CMR, though somewhat reduced versus the 7.0 T situation, remain significant. For all these reasons, this study was designed to build and examine the feasibility of a local four channel Tx/Rx cardiac coil array for anatomical and functional cardiac imaging at 3.0 T. For comparison, a homebuilt 4 channel Rx cardiac coil array exhibiting the same geometry as the Tx/Rx coil and a Rx surface coil array were used. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - GEN A1 - Frauenrath, Tobias A1 - Fuchs, Katharina A1 - Hezel, Fabian A1 - Dieringer, Matthias A. A1 - Rieger, Jan A1 - Niendorf, Thoralf T1 - Improved cardiac triggering by combining multiple physiological signals: a cardiac MR feasibility study at 7.0 T T2 - 2012 ISMRM Annual Meeting Proceedings N2 - In current clinical cardiovascular MR (CMR) practice cardiac motion is commonly dealt with using ECG based synchronization. However, ECG is corrupted by magneto-hydrodynamic (MHD) effects in magnetic fields. This leads to artifacts in the ECG trace and evokes severe T-wave elevations, which might be misinterpreted as R-waves resulting in erroneous triggering. At (ultra)high field strengths, the propensity of ECG recordings to MHD effects is further pronounced. Pulse oximetry (POX) being inherently sensitive to blood oxygenation provides an alternative approach for cardiac gating. However, due to the travel time of the blood the peak of maximum oxygenation and hence the trigger is delayed by approx. 300 ms with respect to the ECG's R-wave. Also the peak of maximum oxygenation shows a jitter of up to 65 ms. Alternative triggering approaches include acoustic cardiac triggering (ACT). In current clinical practice cardiac gating / triggering commonly relies on using single physiological signals only. Realizing this limitation this study proposes a combined triggering approach which exploits multiple physiological signals including ECG, POX or ACT to track cardiac activity. The feasibility of the coupled approach is examined for LV function assessment at 7.0 T. For this purpose, breath-held 2D-CINE imaging in conjunction with cardiac synchronization was performed paralleled by real time logging of physiological waveforms to track (mis)synchronization between the cardiac cycle and data acquisition. Combinations of the ECG, POX and ACT signals were evaluated and processed in real time to facilitate reliable trigger information. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - GEN A1 - Tkachenko, Valeriy A1 - von Knobelsdorff-Brenkenhoff, Florian A1 - Kleindienst, Denise A1 - Winter, Lukas A1 - Rieger, Jan A1 - Frauenrath, Tobias A1 - Dieringer, Matthias A. A1 - Santoro, Davide A1 - Niendorf, Thoralf A1 - Schulz-Menger, Jeanette T1 - Cardiovasular MR at 7Tesla: assessment of the right ventricle T2 - 2012 ISMRM Annual Meeting Proceedings N2 - The assessment of the right ventricle (RV) is a challenge in today's cardiology, but of growing clinical impact regarding patient prognosis in different cardiac diseases. The detection and differentiation of small wall motion abnormalities may help to enhance the differentiation of cardiomyopathies including Arrhythmogenic Rightventricular Cardiomyopathy. Cardiovascular magnetic resonance (CMR) at 1.5T is the accepted gold standard for RV quantification. The higher spatial resolution achievable at ultrahigh field strength (UHF) offers the potential to gain new insights into the structure and function of the RV. To approach this goal accurate RV chamber quantification at 7T has to be proven. Consequently this study examines the feasibility of assessment of RV dimensions and function at 7T using improved spatial resolution enabled by the intrinsic sensitivity gain of UHF CMR. For this purpose, a dedicated 16 channel TX/RX RF coil array is used together with 2D CINE fast gradient echo (FGRE) imaging. For comparison RV chamber quantification is conducted at 1.5T using a SSFP based state of the art clinical protocol. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - GEN A1 - Gräßl, Andreas A1 - Renz, Wolfgang A1 - Hezel, Fabian A1 - Frauenrath, Tobias A1 - Pfeiffer, Harald A1 - Hoffmann, Werner A1 - Kellmann, Peter A1 - Martin, Conrad A1 - Niendorf, Thoralf T1 - Design, evaluation and application of a modular 32 channel transmit/receive surface coil array for cardiac MRI at 7T T2 - 2012 ISMRM Annual Meeting Proceedings N2 - Cardiac MR (CMR) at ultrahigh (≥7.0 T) fields is regarded as one of the most challenging MRI applications. At 7.0 T image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Detrimental effects bear the potential to spoil the signal-to-noise (SNR) and contrast-to-noise (CNR) benefits of cardiac MR (CMR) at 7.0 T. B₁⁺-inhomogeneities and signal voids represent the main challenges. Various pioneering coil concepts have been proposed to tackle these issues, enabling cardiac MRI at 7.0 T. This includes a trend towards an ever larger number of transmit and receive channels. This approach affords multi-dimensional B₁⁺ modulations to improve B₁⁺ shimming performance and to enhance RF efficiency. Also, parallel imaging benefits from a high number of receive channels enabling two-dimensional acceleration. Realizing the limitations of existing coil designs tailored for UHF CMR and recognizing the opportunities of a many element TX/RX channel architecture this work proposes a modular, two dimensional 32-channel transmit and receive array using loop elements and examines its efficacy for enhanced B¹+ homogeneity and improved parallel imaging performance. Y1 - 2012 SN - 1545-4428 N1 - ISMRM 20th Annual Meeting & Exhibition, 5-11 May 2012, Melbourne, Australia ER - TY - PAT A1 - Frauenrath, Tobias A1 - Niendorf, Thoralf T1 - MRT-Vorrichtung und Verfahren zum Betreiben einer MRT-Vorrichtung T1 - Magnetic resonance tomography (MRT) apparatus and method of operating a magnetic resonance (MR) apparatus T1 - Appareil de tomographie par résonance magnétique et procédé de fonctionnement d'un appareil à résonance magnétique N2 - A magnetic resonance tomography (MRT) apparatus (1) for the examination of a body (14) comprises parameter acquisition devices (13) for the acquisition of cardiovascular parameters of the body (14) and a control device (15) in communication with the parameter acquisition devices (13) for synchronizing the imaging, wherein the control device (15) is adapted to analyse the data of at least two parameter acquisition devices (13) and to output a control signal based on the analysis. Y1 - 2012 ER - TY - JOUR A1 - Gräßl, Andreas A1 - Renz, Wolfgang A1 - Hezel, Fabian A1 - Dieringer, Matthias A. A1 - Winter, Lukas A1 - Özerdem, Celal A1 - Rieger, Jan A1 - Kellmann, Peter A1 - Santoro, Davide A1 - Lindel, Tomasz D. A1 - Frauenrath, Tobias A1 - Pfeiffer, Harald A1 - Niendorf, Thoralf T1 - Modular 32-channel transceiver coil array for cardiac MRI at 7.0T JF - Magnetic Resonance in Medicine N2 - Purpose To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. Methods The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1+ field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Results Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm3 for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. Conclusion The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T. Y1 - 2013 U6 - https://doi.org/10.1002/mrm.24903 SN - 1522-2594 VL - 72 IS - 1 SP - 276 EP - 290 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Frauenrath, Tobias A1 - Fuchs, Katharina A1 - Dieringer, Matthias A. A1 - Özerdem, Celal A1 - Patel, Nishan A1 - Renz, Wolfgang A1 - Greiser, Andreas A1 - Elgeti, Thomas A1 - Niendorf, Thoralf T1 - Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: A feasibility study JF - Journal of Magnetic Resonance Imaging N2 - Purpose: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. Materials and Methods: The MHD effect was scrutinized using a pulsatile flow phantom at B0 = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B0 ranging from 0.05–7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. Results: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B0 and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B0 = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. Conclusion: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle. J. Magn. Reson. Imaging 2012;36:364–372. © 2012 Wiley Periodicals, Inc. Y1 - 2012 U6 - https://doi.org/10.1002/jmri.23634 SN - 1522-2586 VL - 36 IS - 2 SP - 364 EP - 372 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Grande, Marion A1 - Meffert, Elisabeth A1 - Schoenberger, Eva A1 - Jung, Stefanie A1 - Frauenrath, Tobias A1 - Huber, Walter A1 - Hussmann, Katja A1 - Moormann, Mareike A1 - Heim, Stefan T1 - From a concept to a word in a syntactically complete sentence: An fMRI study on spontaneous language production in an overt picture description task JF - NeuroImage N2 - Spontaneous language has rarely been subjected to neuroimaging studies. This study therefore introduces a newly developed method for the analysis of linguistic phenomena observed in continuous language production during fMRI. Most neuroimaging studies investigating language have so far focussed on single word or — to a smaller extent — sentence processing, mostly due to methodological considerations. Natural language production, however, is far more than the mere combination of words to larger units. Therefore, the present study aimed at relating brain activation to linguistic phenomena like word-finding difficulties or syntactic completeness in a continuous language fMRI paradigm. A picture description task with special constraints was used to provoke hesitation phenomena and speech errors. The transcribed speech sample was segmented into events of one second and each event was assigned to one category of a complex schema especially developed for this purpose. The main results were: conceptual planning engages bilateral activation of the precuneus. Successful lexical retrieval is accompanied – particularly in comparison to unsolved word-finding difficulties – by the left middle and superior temporal gyrus. Syntactic completeness is reflected in activation of the left inferior frontal gyrus (IFG) (area 44). In sum, the method has proven to be useful for investigating the neural correlates of lexical and syntactic phenomena in an overt picture description task. This opens up new prospects for the analysis of spontaneous language production during fMRI. Y1 - 2012 U6 - https://doi.org/10.1016/j.neuroimage.2012.03.087 SN - 1522-2586 VL - 61 IS - 3 SP - 702 EP - 714 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Martin, Conrad A1 - Frauenrath, Tobias A1 - Özerdem, Celal A1 - Renz, Wolfgang A1 - Niendorf, Thoralf T1 - Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging JF - European Radiology N2 - Objective The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. Methods MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. Results The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. Conclusions MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur. KW - MRI KW - MR safety KW - Magneto alert sensor KW - High field MRI KW - Uktrahigh field MRI Y1 - 2011 U6 - https://doi.org/10.1007/s00330-011-2153-z SN - 1432-1084 VL - 21 SP - 2187 EP - 2192 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Dieringer, Matthias A. A1 - Renz, Wolfgang A1 - Lindel, Tomasz D. A1 - Seifert, Frank A1 - Frauenrath, Tobias A1 - von Knobelsdorf-Brenkenhoff, Florian A1 - Waiczies, Helmar A1 - Hoffmann, Werner A1 - Rieger, Jan A1 - Pfeiffer, Harald A1 - Ittermann, Bernd A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T JF - Journal of Magnetic Resonance Imaging N2 - Purpose To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. Materials and Methods A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-1 calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3. Results Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-2 calibration approach. Conclusion A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated. Y1 - 2011 U6 - https://doi.org/10.1002/jmri.22451 SN - 1522-2586 VL - 33 IS - 3 SP - 736 EP - 741 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Becker, Meike A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Krombach, Gabriele A. A1 - Kremer, Ute A1 - Koppers, Benedikt A1 - Butenweg, Christoph A1 - Goemmel, Andreas A1 - Utting, Jane F. A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T JF - European Radiology N2 - Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT’s performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)%). Conclusions: ACT’s intrinsic insensitivity to interference from electromagnetic fields renders KW - Magnetic resonance imaging (MRI) KW - MR-stethoscope KW - Magnetic field strength KW - Left ventriular function KW - Cardiovascular MRI Y1 - 2010 U6 - https://doi.org/10.1007/s00330-009-1676-z SN - 1432-1084 (Onlineausgabe) SN - 0938-7994 (Druckausgabe) VL - 20 SP - 1344 EP - 1355 PB - Springer CY - Berlin ER - TY - JOUR A1 - Frauenrath, Tobias A1 - Hezel, Fabian A1 - Heinrichs, Uwe A1 - Kozerke, Sebastian A1 - Utting, Jane A1 - Kob, Malte A1 - Butenweg, Christoph A1 - Boesiger, Peter A1 - Niendorf, Thoralf T1 - Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope JF - Investigative Radiology KW - phonocardiogram KW - electrocardiogram KW - cardiac gating KW - high field MR imaging KW - cardiovascular MR imaging Y1 - 2009 U6 - https://doi.org/10.1097/RLI.0b013e3181b4c15e SN - 1536-0210 (online) SN - 0020-9996 (gedruckt) VL - 44 IS - 9 SP - 539 EP - 547 PB - Lippincott Williams & Wilkins ; (via Ovid) CY - Philadelphia, Pa ER -