TY - JOUR A1 - Hugenroth, Kristin A1 - Borchardt, Ralf A1 - Ritter, Philine A1 - Groß‑Hardt, Sascha A1 - Meyns, Bart A1 - Verbelen, Tom A1 - Steinseifer, Ulrich A1 - Kaufmann, Tim A. S. A1 - Engelmann, Ulrich M. T1 - Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input JF - Scientific Reports N2 - Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB. Y1 - 2021 U6 - http://dx.doi.org/10.1038/s41598-021-96397-2 SN - 2045-2322 VL - 11 IS - Art. No. 16800 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Neidlin, Michael A1 - Engelmann, Ulrich M. A1 - Kaufmann, Tim A. S. A1 - Steinseifer, Ulrich A1 - Heilmann, Torsten T1 - Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk‐Reduced Placement: an In Silico Proof‐of‐Concept JF - Artificial Organs Y1 - 2021 U6 - http://dx.doi.org/10.1111/aor.13964 SN - 1525-1594 IS - Accepted Article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Teeman, Eric A1 - Slabu, Iona A1 - Krishnan, Kannan M. T1 - Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.041 SN - 0304-8853 VL - 471 IS - 1 SP - 450 EP - 456 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Seifert, Julian A1 - Mues, Benedikt A1 - Roitsch, Stefan A1 - Ménager, Christine A1 - Schmidt, Annette M. A1 - Slabu, Ioana T1 - Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.113 SN - 0304-8853 VL - 471 IS - 1 SP - 486 EP - 494 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Roeth, Anjali A.J. A1 - Eberbeck, Dietmar A1 - Buhl, Eva Miriam A1 - Neumann, Ulf Peter A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells JF - Scientific Reports N2 - Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells. Y1 - 2018 U6 - http://dx.doi.org/10.1038/s41598-018-31553-9 SN - 2045-2322 VL - 8 IS - 1 SP - Article number 13210 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Draack, Sebastian A1 - Viereck, Thilo A1 - Frank, A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications JF - IEEE Magnetic Letters N2 - Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23% for agglomerated MNP in suspension and a decrease by up to 28% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy. Y1 - 2018 U6 - http://dx.doi.org/10.1109/LMAG.2018.2879034 SN - 1949-307X VL - 9 IS - Article number 8519617 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Baumann, Martin A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia JF - Current Directions in Biomedical Engineering Y1 - 2017 U6 - http://dx.doi.org/10.1515/cdbme-2017-0096 SN - 2364-5504 VL - 3 IS - 2 SP - 457 EP - 460 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Chen, Chao A1 - Jost, Peter A1 - Volker, Hanno A1 - Kaminski, Marvin A1 - Wirtssohn, Matti R. A1 - Engelmann, Ulrich M. A1 - Krüger, K. A1 - Schlich, Franziska F. A1 - Schlockermann, Carl A1 - Lobo, Ricardo P.S.M. A1 - Wuttig, Matthias T1 - Dielectric properties of amorphous phase-change materials JF - Physical Review B Y1 - 2017 U6 - http://dx.doi.org/10.1103/PhysRevB.95.094111 SN - 2469-9950 VL - 95 IS - 9 SP - Article number 094111 ER - TY - JOUR A1 - Röth, A. A1 - Slabu, I. A1 - Kolvenbach, K. A1 - Engelmann, Ulrich M. A1 - Baumann, M. A1 - Schmitz-Rode, T. A1 - Trahms, L. A1 - Neumann, U. T1 - Aufnahmekinetik von magnetischen Nanopartikeln zur Tumortherapie in humanen Pankreaskarzinomzelllinien JF - Zeitschrift für Gastroenterologie Y1 - 2015 U6 - http://dx.doi.org/10.1055/s-0035-1559529 SN - 1439-7803 VL - 53 IS - 8 SP - KC139 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Röth, A.A. A1 - Slabu, I. A1 - Engelmann, Ulrich M. A1 - Baumann, M. A1 - Schmitz-Rode, T. A1 - Neumann, U. P. T1 - Targeting von gastroenterologischen Tumoren mittels magnetischer Nanopartikel zur hyperthermischen Therapie JF - Zeitschrift für Gastroenterologie Y1 - 2017 U6 - http://dx.doi.org/10.1055/s-0037-1605124 VL - 55 IS - 8 SP - KV-384 PB - Thieme CY - Stuttgart ER - TY - THES A1 - Engelmann, Ulrich M. T1 - Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy Y1 - 2019 SN - 978-3-945954-58-4 N1 - Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2019 PB - Infinite Science Publishing CY - Lübeck ER - TY - GEN A1 - Engelmann, Ulrich M. T1 - Gesprächsführungskompetenzen für Naturwissenschaftler und Ingenieure. Maßnahmen zur Förderung und curricularen Verankerung von Gesprächsführungskompetenzen an Fachhochschulen T1 - Conversational Skills for Scientists and Engineers. - Measures for the Development and Curricular Promotion of Conversational Competences at German Universities of Applied Science Y1 - 2019 U6 - http://dx.doi.org/10.13140/RG.2.2.34026.98248 PB - Deutsche Gesellschaft für Sprechwissenschaft und Sprecherziehung (DGSS e.V.) CY - Aachen ER - TY - JOUR A1 - Slabu, Ioana A1 - Roeth, Anjali A. A1 - Engelmann, Ulrich M. A1 - Wiekhorst, Frank A1 - Buhl, Eva M. A1 - Neumann, Ulf P. A1 - Schmitz-Rode, Thomas T1 - Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro JF - Nanotechnology Y1 - 2019 U6 - http://dx.doi.org/10.1088/1361-6528/ab033e SN - 1361-6528 VL - 30 IS - 18 SP - 184004 ER - TY - JOUR A1 - Grundlach, Michael A1 - Baumann, Martin A1 - Engelmann, Ulrich M. ED - Dössel, Olaf T1 - How Multimodal Examinations Can Increase Sustainable Student Gain by Aligning Teaching and Assessment JF - Current Directions in Biomedical Engineering N2 - Modern industry and multi-discipline projects require highly trained individuals with resilient science and engineering back-grounds. Graduates must be able to agilely apply excellent theoretical knowledge in their subject matter as well as essential practical “hands-on” knowledge of diverse working processes to solve complex problems. To meet these demands, university education follows the concept of Constructive Alignment and thus increasingly adopts the teaching of necessary practical skills to the actual industry requirements and assessment routines. However, a systematic approach to coherently align these three central teaching demands is strangely absent from current university curricula. We demonstrate the feasibility of implementing practical assessments in a regular theory-based examination, thus defining the term “blended assessment”. We assessed a course for natural science and engineering students pursuing a career in biomedical engineering, and evaluated the benefit of blended assessment exams for students and lecturers. Our controlled study assessed the physiological background of electrocardiograms (ECGs), the practical measurement of ECG curves, and their interpretation of basic pathologic alterations. To study on long time effects, students have been assessed on the topic twice with a time lag of 6 months. Our findings suggest a significant improvement in student gain with respect to practical skills and theoretical knowledge. The results of the reassessments support these outcomes. From the lecturers ́ point of view, blended assessment complements practical training courses while keeping organizational effort manageable. We consider blended assessment a viable tool for providing an improved student gain, industry-ready education format that should be evaluated and established further to prepare university graduates optimally for their future careers. KW - constructive alignment KW - examination KW - long-term retention KW - multimodal KW - practical learning Y1 - 2021 SN - 2364-5504 U6 - http://dx.doi.org/10.1515/cdbme-2021-2019 VL - 7 IS - 7/2 SP - 73 EP - 76 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Engelmann, Ulrich M. A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data JF - Journal of Magnetism and Magnetic Materials N2 - Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as “colourization”) of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples’ total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization. Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.jmmm.2022.169969 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169969 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Pourshahidi, Mohammad Ali A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation JF - Journal of Magnetism and Magnetic Materials N2 - Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles’ magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing. Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.jmmm.2022.169965 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - http://dx.doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - BOOK A1 - Engelmann, Ulrich M. T1 - Zielführend moderieren N2 - In der Teamarbeit wird Moderation zum Erfolgsfaktor, der jedoch häufig unterschätzt wird. Ausgehend vom persönlichen Kompetenzniveau verknüpft dieses Buch Grundlagen und Methoden zu Wegen, um Ihre persönliche Entwicklung individuell zu begleiten: Neulinge finden hilfreiche Checklisten und Basistechniken für ihre ersten Moderationen, Fortgeschrittene wertvolle Praxistipps und Methoden für den Ausbau ihrer Moderationskompetenz. Profis schließlich genießen eine raffinierte Aussicht auf weniger bekannte Techniken und neue Anwendungen. Weiterführende Exkurse zum Meeting-Management und zur Online-Moderation runden den Anwendungshorizont ab. Ob in Beruf, Studium oder Ehrenamt – derart ausgestattet gelingen Ihre eigene sowie die Entwicklung Ihres Teams durch zielführende Moderationen. Y1 - 2022 SN - 9783838556895 U6 - http://dx.doi.org/10.36198/9783838556895 PB - UVK Verlag CY - Stuttgart ER - TY - JOUR A1 - Roeth, A.A. A1 - Slabu, I. A1 - Kessler, A. A1 - Engelmann, Ulrich M. T1 - Local treatment of pancreatic cancer with magnetic nanoparticles JF - HPB Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.hpb.2019.10.959 SN - 1365-182X VL - 21 IS - Supplement 3 SP - S868 EP - S869 PB - Elsevier CY - Amsterdam ER -