TY - JOUR A1 - Choi, Chang-Hoon A1 - Felder, Tim A1 - Felder, Jörg A1 - Tellmann, Lutz A1 - Hong, Suk-Min A1 - Wegener, Hans-Peter A1 - Shah, N Jon A1 - Ziemons, Karl T1 - Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate JF - Physics in Medicine & Biology N2 - Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future. Y1 - 2020 U6 - https://doi.org/10.1088/1361-6560/ab87f8 SN - 0031-9155 VL - 65 IS - 11 PB - IOP CY - Bristol ER - TY - JOUR A1 - Ziemons, Karl A1 - Auffray, Etiennette A1 - Barbier, R. A1 - Brandenburg, G. A1 - Bruyndonckx, P. T1 - The ClearPET™ project: Development of a 2nd generation high-performance small animal PET scanner JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - Second generation high-performance PET scanners, called ClearPET™1, have been developed by working groups of the Crystal Clear Collaboration (CCC). High sensitivity and high spatial resolution for the ClearPET camera is achieved by using a phoswich arrangement combining two different types of lutetium-based scintillator materials: LSO from CTI and LuYAP:Ce from the CCC (ISTC project). In a first ClearPET prototype, phoswich arrangements of 8×8 crystals of 2×2×10 mm3 are coupled to multi-channel photomultiplier tubes (Hamamatsu R7600). A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the ring is 120 mm, the axial detector length is 110 mm.The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the exact pulse starting time, which is subsequently used for coincidence detection. The gantry allows rotation of the detector modules around the field of view. Preliminary data shows a correct identification of the crystal layer about (98±1)%. Typically the energy resolution is (23.3±0.5)% for the luyap layer and (15.4±0.4)% for the lso layer. early studies showed the timing resolution of 2 ns FWHM and 4.8 ns FWTM. the intrinsic spatial resolution ranges from 1.37 mm to 1.61 mm full-width of half-maximum (FWHM) with a mean of 1.48 mm FWHM. further improvements in image and energy resolution are expected when the system geometry is fully modeled. Y1 - 2005 SN - 0168-9002 N1 - Proceedings of the 7th International Conference on Inorganic Scintillators and their Use in Scientific and Industrial Applications VL - 537 IS - 1-2 SP - 307 EP - 311 ER - TY - JOUR A1 - Mosset, Jean-Baptiste A1 - Devroede, Olivier A1 - Krieguer, Magalie A1 - Rey, M. A1 - Vieira, J.-M. A1 - Jung, J. H. A1 - Kuntner, Claudia A1 - Streun, Matthias A1 - Ziemons, Karl A1 - Auffray, Etiennette A1 - Sempere-Roldan, P. A1 - Lecoq, Paul A1 - Bruyndonckx, Peter A1 - Loude, Jean-François A1 - Tavernier, Stefaan A1 - Morel, Christian T1 - Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator JF - IEEE Transactions on Nuclear Science N2 - This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)% for LSO and (25±2)% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis. Y1 - 2006 SN - 0018-9499 VL - 53 IS - 1 SP - 25 EP - 29 ER - TY - JOUR A1 - Ziemons, Karl A1 - Auffray, Etiennette A1 - Barbier, R. A1 - Brandenburg, G. T1 - The ClearPET TM LSO/LuYAP phoswich scanner: a high performance small animal PET system JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - A 2nd generation high performance small animal PET scanner, called ClearPET™, has been designed and a first prototype is built by working groups of the Crystal Clear Collaboration (CCC). In order to achieve high sensitivity and maintain good uniform spatial resolution over the field of view in high resolution PET systems, it is necessary to extract the depth of interaction (DOI) information and correct for spatial degradation. The design of the first ClearPET™ Demonstrator based on the use of the multi-anode photomultiplier tube (Hamamatsu R7600-M64) and a LSO/LuYAP phoswich matrix. The two crystal layers of 8*8 crystals (2*2*10 mm3) are stacked on each other and mounted without light guide as one to one on the PMT. A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the crystal ring is 137 mm, the axial detector length is 110 mm. The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. The measurements have been done using the first LSO/LuYAP detector cassettes. Y1 - 2004 SN - 1082-3654 SP - 1728 EP - 1732 ER - TY - JOUR A1 - Auffray, Etiennette A1 - Bruyndonckx, P. A1 - Devroede, O. A1 - Fedorov, A. A1 - Ziemons, Karl T1 - The ClearPET project JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The Crystal Clear Collaboration has designed and is building a high-resolution small animal PET scanner. The design is based on the use of the Hamamatsu R7600-M64 multi-anode photomultiplier tube and a LSO/LuYAP phoswich matrix with one to one coupling between the crystals and the photo-detector. The complete system will have 80 PM tubes in four rings with an inner diameter of 137 mm and an axial field of view of 110 mm. The PM pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. Simulations, and measurements a 2×4 module test set-up predict a spatial resolution of 1.5 mm in the centre of the field of view and a sensitivity of 5.9% for a point source in the centre of the field of view. Y1 - 2004 SN - 0168-9002 N1 - Proceedings of the 2nd International Conference on Imaging Technologies in Biomedical Sciences VL - 527 IS - 1-2 SP - 171 EP - 174 ER - TY - JOUR A1 - Ziemons, Karl A1 - Achten, R. A1 - Auffray, Etiennette A1 - Müller-Veggian, Mattea T1 - The ClearPET™ neuro scanner: a dedicated LSO/LuYAP phoswich small animal PET scanner JF - 2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear & Plasma Sciences Society. Guest ed.: J. Anthony Seibert Y1 - 2004 SN - 1082-3654 N1 - Nuclear Science Symposium Conference Record, 2004 IEEE SP - 2430 EP - 2433 PB - IEEE Operations Center CY - Piscataway, NJ ER -