TY - JOUR A1 - Steuer-Dankert, Linda A1 - Gilmartin, Shannon K. A1 - Muller, Carol B. A1 - Dungs, Carolin A1 - Sheppard, Sheri A1 - Leicht-Scholten, Carmen T1 - Expanding engineering limits : a concept for socially responsible education of engineers JF - The international journal of engineering education Y1 - 2019 SN - 0949-149X VL - 35 IS - 2 SP - 658 EP - 673 ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen ED - Tipurić, Darko ED - Hruška, Domagoj T1 - Diversity- and innovation management in complex engineering organizations T2 - 7th International OFEL Conference on Governance, Management and Entrepreneurship: Embracing Diversity in Organisations. April 5th - 6th, 2019, Dubrovnik, Croatia N2 - Diversity is increasingly being addressed as an innovation-promoting factor. For this reason, companies and institutions tackle the integration of a diversity management approach that enables a heterogenic perspective on innovation development. However, system-theoretical frameworks state that the implementation of diversity measures that are not tailored to the needs of the organization often leads to a rejection or reactivity with regard to the management approach. In this context, especially organizations, which are characterized by a specific hierarchical structure, a dominant habitus or specialist culture, must face the challenge of realizing a sustainable change of the corporate culture that sets the basis for implementing diversity management approaches. The presented research project focuses on analyzing the situation in a huge scientific collaborative project - so called Cluster of Excellence (CoE) - with the aim to implement a diversity - and innovation management strategy. Considering the influencing determinants, the CoE is characterized by its embeddedness in the scientific system, a complex organizational structure, and a high fluctuation rate. The paper presents a systemic approach of reflecting these factors in order to develop a diversity- and innovation management strategy. In this frame, the results of a quantitative survey of CoE employees and derived mindset-types are presented. The results show a need for taking different mindset-types into account, to be able to develop a tailored management strategy. The aim of the project is to give recommendations for developing a sustainable management concept that promotes both diversity and innovation by drawing on the persisting mindsets of organization members while reflecting top down as well as bottom up factors of implementation processes as well as the psychology of change. This paper addresses all who are concerned with the management of human resources in innovation processes and are striving for a cultural change within the framework of complex organizations. KW - Change Management KW - Corporate Culture KW - Diversity Management KW - Engineering KW - Innovation Management Y1 - 2019 SP - 136 EP - 157 PB - Governance Research and Development Centre (CIRU) CY - Zagreb ER - TY - CHAP A1 - Leicht-Scholten, Carmen A1 - Steuer-Dankert, Linda T1 - Educating engineers for socially responsible solutions through design thinking T2 - Design thinking in higher education: interdisciplinary encounters N2 - There is a broad international discussion about rethinking engineering education in order to educate engineers to cope with future challenges, and particularly the sustainable development goals. In this context, there is a consensus about the need to shift from a mostly technical paradigm to a more holistic problem-based approach, which can address the social embeddedness of technology in society. Among the strategies suggested to address this social embeddedness, design thinking has been proposed as an essential complement to engineering precisely for this purpose. This chapter describes the requirements for integrating the design thinking approach in engineering education. We exemplify the requirements and challenges by presenting our approach based on our course experiences at RWTH Aachen University. The chapter first describes the development of our approach of integrating design thinking in engineering curricula, how we combine it with the Sustainable Development Goals (SDG) as well as the role of sustainability and social responsibility in engineering. Secondly, we present the course “Expanding Engineering Limits: Culture, Diversity, and Gender” at RWTH Aachen University. We describe the necessity to theoretically embed the method in social and cultural context, giving students the opportunity to reflect on cultural, national, or individual “engineering limits,” and to be able to overcome them using design thinking as a next step for collaborative project work. The paper will suggest that the successful implementation of design thinking as a method in engineering education needs to be framed and contextualized within Science and Technology Studies (STS). Y1 - 2020 SN - 978-981-15-5780-4 U6 - https://doi.org/10.1007/978-981-15-5780-4 SP - 229 EP - 246 PB - Springer CY - Singapore ER - TY - CHAP A1 - von den Driesch, Elena A1 - Steuer-Dankert, Linda A1 - Berg, Tobias A1 - Leicht-Scholten, Carmen T1 - Implementation of gender and diversity perspectives in transport development plans in germany T2 - Engendering cities: designing sustainable urban spaces for all N2 - As mobility should ensure the accessibility to and participation in society, transport planning has to deal with a variety of gender and diversity categories affecting users’ mobility needs and patterns. Exemplified by an analysis of an instrument of transport development processes – German Transport Development Plans (TDPs) – we investigated to what extent diverse target groups and their mobility requirements are implemented in transport strategy papers. Research results illustrate a still-prevalent neglect of several relevant gender and diversity categories while prioritizing and focusing on eco-friendly topics. But how sustainable can transport be without facing the diversification of life circumstances? Y1 - 2020 SN - 978-1-351-20090-5 SP - 90 EP - 109 PB - Routledge CY - London ER - TY - CHAP A1 - Philipp, Brauner A1 - Brillowski, Florian Sascha A1 - Dammers, Hannah A1 - Königs, Peter A1 - Kordtomeikel, Frauke Carole A1 - Petruck, Henning A1 - Schaar, Anne Kathrin A1 - Schmitz, Seth A1 - Steuer-Dankert, Linda A1 - Mertens, Alexander A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Nitsch, Verena A1 - Schuh, Günther A1 - Ziefle, Martina ED - Mrugalska, Beata ED - Trzcielinski, Stefan ED - Karwowski, Waldemar ED - Nicolantonio, Massimo Di ED - Roossi, Emilio T1 - A research framework for human aspects in the internet of production: an intra-company perspective T2 - Proceedings of the AHFE 2020 N2 - Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the “Internet of Production” (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP. KW - Human factors KW - Digitalization KW - Acceptance KW - Ethics KW - Human-robot collaboration Y1 - 2020 SN - 978-3-030-51980-3 U6 - https://doi.org/10.1007/978-3-030-51981-0_1 N1 - AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, July 16–20, 2020, USA SP - 3 EP - 17 PB - Springer CY - Cham ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - Managing change and acceptance of digitalization strategies - Implementing the vision of „Internet of Production“ (IoP) in existing corporate structures T2 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 N2 - The vision of the Internet of Production is to enable a new level of crossdomain collaboration by providing semantically adequate and context-aware data from production, development & usage in real-time. Y1 - 2022 N1 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 : 1. – 2. Dezember 2022, Eurogress Aachen SP - 153 EP - 153 ER - TY - CHAP A1 - Gkatzogias, Konstantinos A1 - Veljkoviv, Ana A1 - Pohoryles, Daniel A. A1 - Tsionis, Georgios A1 - Bournas, Dionysios A. A1 - Crowley, Helen A1 - Norlén, Hedvig A1 - Butenweg, Christoph A1 - Gervasio, Helena A1 - Manfredi, Vincenzo A1 - Masi, Angelo A1 - Zaharieva, Roumiana ED - Gkatzogias, Konstantinos ED - Tsionis, Georgios T1 - Policy practice and regional impact assessment for building renovation T2 - REEBUILD Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings N2 - The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent. Y1 - 2022 SN - 978-92-76-60454-9 U6 - https://doi.org/10.2760/883122 SN - 1831-9424 SP - 1 EP - 68 PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - https://doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - JOUR A1 - Srivastava, A. A1 - Chahar, V. A1 - Sharma, V. A1 - Sun, Y. A1 - Bol, R. A1 - Knolle, F. A1 - Schnug, E. A1 - Hoyler, Friedrich A1 - Naskar, N. A1 - Lahiri, S. A1 - Patnaik, R. T1 - Study of uranium toxicity using low-background gamma-ray spectrometry JF - Journal of Radioanalytical and Nuclear Chemistry Y1 - 2017 U6 - https://doi.org/10.1007/s10967-017-5466-9 SN - 1588-2780 IS - Online first SP - 1 EP - 7 PB - Springer CY - Berlin ER - TY - CHAP A1 - Gorzalka, Philip A1 - Dahlke, Dennis A1 - Göttsche, Joachim A1 - Israel, Martin A1 - Patel, Dhruvkumar A1 - Prahl, Christoph A1 - Schmiedt, Jacob Estevam A1 - Frommholz, Dirk A1 - Hoffschmidt, Bernhard A1 - Linkiewicz, Magdalena T1 - Building Tomograph–From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input T2 - EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria Y1 - 2018 ER -