TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Proceedings of the International Conference Civil Engineering 2021 - Achievements and Visions N2 - Nowadays modern high-performance buildings and facilities are equipped with monitoring systems and sensors to control building characteristics like energy consumption, temperature pattern and structural safety. The visualization and interpretation of sensor data is typically based on simple spreadsheets and non-standardized user-oriented solutions, which makes it difficult for building owners, facility managers and decision-makers to evaluate and understand the data. The solution of this problem in the future are integrated BIM-Sensor approaches which allow the generation of BIM models incorporating all relevant information of monitoring systems. These approaches support both the dynamic visualization of key structural performance parameters, the effective long-term management of sensor data based on BIM and provide a user-friendly interface to communicate with various stakeholders. A major benefit for the end user is the use of the BIM software architecture, which is the future standard anyway. In the following, the application of the integrated BIM-Sensor approach is illustrated for a typical industrial facility as a part of an early warning and rapid response system for earthquake events currently developed in the research project “ROBUST” with financial support by the German Federal Ministry for Economic Affairs and Energy (BMWI). Y1 - 2021 N1 - Civil Engineering 2021 – Achievements and Visions, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia SP - 67 EP - 75 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - Proceedings of the seventeenth world conference on earthquake engineering N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 N1 - 17. World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 2021-09-27 - 2021-10-02 ER - TY - CHAP A1 - Neumann, Hannah A1 - Adam, Mario A1 - Backes, Klaus A1 - Börner, Martin A1 - Clees, Tanja A1 - Doetsch, Christian A1 - Glaeser, Susanne A1 - Herrmann, Ulf A1 - May, Johanna A1 - Rosenthal, Florian A1 - Sauer, Dirk Uwe A1 - Stadler, Ingo T1 - Development of open educational resources for renewable energy and the energy transition process T2 - ISES SWC 2021 N2 - The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material. KW - energy transition KW - renewable energies KW - open educational resources KW - dissemination KW - digitalization Y1 - 2021 U6 - https://doi.org/10.18086/swc.2021.47.03 N1 - ISES Solar World Congress, virtual conference 25-29 October 2021 PB - International Solar Energy Society CY - Freiburg ER -