TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - https://doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - THES A1 - Pauls, Benjamin T1 - Energiewende im Stromsektor: Nachhaltigkeit über Umweltschutz hinaus BT - Qualitative Einblicke in den Energiewende-Diskurs des Stromsektors in Deutschland N2 - Die Energiewende wird häufig als „nachhaltig“ bezeichnet, das genaue Begriffsverständnis bleibt jedoch vage. Diese Transformation von fossilen und nuklearen hin zu erneuerbaren Energiequellen steht im Fokus der Treibhausgasneutralität. So soll dem fortschreitenden Klimawandel entgegengetreten werden. Das Thema der vorliegenden Arbeit ist die Definition eines möglichen Verständnisses von „Nachhaltigkeit“ in der Energiewende des deutschen Stromsektors. Die leitenden Forschungsfragen lauten: Was kann im Zusammenhang mit der Energiewende im Stromsektor Deutschlands unter Nachhaltigkeit verstanden werden? Inwieweit unterscheidet sich dieses Verständnis von der bisherigen Herangehensweise? Die Datenbasis zur Beantwortung dieser liefern sechs leitfadengestützte Expert:inneninterviews. Als Analysemethode dient die inhaltliche Strukturierung nach Mayring (2015). Die qualitative Studie hat gezeigt, dass eine nachhaltige Energiewende den Menschen und die Natur zentralisiert. Weiter aufgeschlüsselt stehen die drei Nachhaltigkeitsdimensionen und die Generationengerechtigkeit. Dabei dient die ökonomische Dimension der sozialen und ökologischen. Wichtig sind die Inklusion und Beteiligung von Bevölkerung, Unternehmen und Politik. Gleichzeitig ist sie Herausforderung und Chance für einen positiven gesellschaftlichen Wandel. Technisch dienen Windenergie- und Photovoltaikanlagen als Energielieferanten und Wasserstoffsysteme als Zwischenspeicher, Stabilitätssicherung und zur Kopplung der Sektoren. Damit ist Nachhaltigkeit die Chance, die Energiewende richtig zu gestalten und damit über Klimaneutralität hinauszugehen Y1 - 2024 ER -