TY - JOUR A1 - Kallweit, Stephan A1 - Kaminsky, R. A1 - Rossi, M. A1 - Morbiducci, U. T1 - 2D PIV Study of the flow downstream : Two prototypes of a ney monoleaflet artificial aortic heart valve prosthesis / Kaminsky, R. ; Kramm, K. ; Weber, H. J. ; Simons, A. P. ; Kallweit, S. ; Verdonck, P. R. JF - The International Journal of Artificial Organs. 28 (2005), H. 9 Y1 - 2005 SN - 1724-6040 N1 - Abstracts: XXXII Annual ESAO Congress, 5-8 October 2005, Bologna - Italy SP - 921 ER - TY - JOUR A1 - Kallweit, Stephan A1 - Kaminsky, R. A1 - Rossi, M. A1 - Morbiducci, U. T1 - 3D PIV measurements of prosthetic heart valve dynamics / Kaminsky, R. ; Rossi, M. ; Morbiducci, U. ; Scalise, L. ; Castellini, P. ; Kallweit, S. ; Verdonck, P. ; Grigioni, M. JF - The International Journal of Artificial Organs. 28 (2005), H. 9 Y1 - 2005 SN - 1724-6040 N1 - Abstracts: XXXII Annual ESAO Congress, 5-8 October 2005, Bologna - Italy SP - 868 ER - TY - JOUR A1 - Gebhardt, Andreas A1 - Fateri, Miranda T1 - 3D printing and its applications JF - RTejournal - Forum für Rapid Technologie N2 - Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen rückt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten Öffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollständiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag verändern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch geprägt sind und sich nur punktuell auf Beispiele stützen. Dieser Beitrag geht von den Bedürfnissen der Menschen aus, wie sie z.B. in der Maslow’schen Bedürfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren. N2 - An increasing amount of popular articles focus on making models and sculptures by 3D Printing thus making more and more even private users aware of this technology. Unfortunately they mostly draw an incomplete picture of how our daily life will be influenced by this new technology. Often this is caused by a very technical point of view based on not very representative examples. This article focuses on the peoples needs as they have been structured by the so-called Maslow pyramid. Doing so, it underlines that 3D Printing (called Additive Manufacturing or Rapid Prototyping as well) already touches all aspects of life and is about to revolutionize most of them. Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0009-2-35626 SN - 1614-0923 VL - 10 IS - 1 PB - Fachhochschule Aachen CY - Aachen ER - TY - JOUR A1 - Gebhardt, Andreas T1 - 3D-Druck ist überall. Modische Accessoires, Kleidung, Medikamente, Nahrungsmittel, Autos, Häuser, Waffen, Büsten, Musikinstrumente - alles geht JF - Kunststoffe Y1 - 2015 SN - 0023-5563 VL - 105 IS - 10 SP - 62 EP - 70 PB - Hanser CY - München ER - TY - JOUR A1 - Gebhardt, Andreas A1 - Fateri, Miranda T1 - 3D-Drucken und die Anwendungen JF - RTejournal - Forum für Rapid Technologie Y1 - 2014 SN - 1614-0923 VL - 11 (2014) IS - 1 SP - 1 EP - 9 ER - TY - JOUR A1 - Baatz, Udo T1 - 82.000 FL/h - Eine neue Dimension in der Abfüllung von Erfrischungsgetränken JF - Das Erfrischungsgetränk - Mineralwasser-Zeitung Y1 - 1974 SN - 0342-2232 VL - 27 IS - 14 SP - 341 EP - 345 PB - Matthaes CY - Stuttgart ER - TY - JOUR A1 - Luft, Angela A1 - Luft, Nils A1 - Arntz, Kristian T1 - A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0 JF - Applied Sciences N2 - Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems’ fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning. KW - manufacturing data model KW - production planning and control KW - manufacturing flexibility KW - technology planning KW - SOA KW - service-oriented architectures KW - factory planning Y1 - 2023 U6 - http://dx.doi.org/10.3390/app13137610 N1 - This article belongs to the Special Issue "Smart Industrial System" VL - 2023 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Luft, Angela A1 - Bremen, Sebastian A1 - Luft, Nils T1 - A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning JF - Processes N2 - There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly. KW - additive manufacturing KW - factory planning KW - manufacturing flexibility KW - volume flexibility KW - mix flexibility Y1 - 2023 U6 - http://dx.doi.org/10.3390/pr11071968 SN - 2227-9717 VL - 11 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Koster, Arie A1 - Scheidweiler, Robert A1 - Tieves, Martin T1 - A flow based pruning scheme for enumerative equitable coloring algorithms JF - A flow based pruning scheme for enumerative equitable coloring algorithms N2 - An equitable graph coloring is a proper vertex coloring of a graph G where the sizes of the color classes differ by at most one. The equitable chromatic number is the smallest number k such that G admits such equitable k-coloring. We focus on enumerative algorithms for the computation of the equitable coloring number and propose a general scheme to derive pruning rules for them: We show how the extendability of a partial coloring into an equitable coloring can be modeled via network flows. Thus, we obtain pruning rules which can be checked via flow algorithms. Computational experiments show that the search tree of enumerative algorithms can be significantly reduced in size by these rules and, in most instances, such naive approach even yields a faster algorithm. Moreover, the stability, i.e., the number of solved instances within a given time limit, is greatly improved. Since the execution of flow algorithms at each node of a search tree is time consuming, we derive arithmetic pruning rules (generalized Hall-conditions) from the network model. Adding these rules to an enumerative algorithm yields an even larger runtime improvement. Y1 - 2016 U6 - http://dx.doi.org/10.48550/arXiv.1607.08754 N1 - Lehrstuhl II für Mathematik, RWTH Aachen University SP - 1 EP - 30 ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Carsten A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - http://dx.doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER -