TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Gabrielli, Roland Antonius A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Großmann, Agnes A1 - Schnauffer, Peter A1 - Middendorf, Peter T1 - Additive Manufacturing of Lunar Regolith for Extra-terrestrial Industry Plant T2 - International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan Y1 - 2015 ER - TY - CHAP A1 - Gabrielli, Roland Antonius A1 - Mathies, Johannes A1 - Großmann, Agnes A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Middendorf, Peter A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith T2 - International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan Y1 - 2015 ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive Manufacturing of Drainage Segments for Cooling System of Crucibles Melting Furnaces T2 - International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA N2 - The cooling process in induction based crucible melting furnaces for Industrial applications is one of the important and challenging factors in production and safety engineering. Accordingly, proper implementation of the cooling system of the furnace using optimum cooling guides and fail-safe features are critical in order to improve the safety of the process. Regarding this, manufacturing of porous material with high electrical isolation for the drainage segments of the cooling channels is examined in this study. Consequently, various geometries with different porosities using glass and ceramic powder are fabricated using Selective Laser Sintering (SLS) process. The manufactured parts are examined in a prototype furnace testing and the feasibility of the SLS manufacturing of parts for this application is discussed. Y1 - 2015 ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive manufacturing of drainage segments for cooling system of crucible melting furnaces T2 - Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, ICACC 15, 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, US, Jan 25-30, 2015 Y1 - 2015 U6 - http://dx.doi.org/10.1002/9781119211662.ch14 SN - 0196-6219 SP - 123 EP - 131 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Introduction to Additive Manufacturing T2 - 3D Printing of Optical Components N2 - Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the “printed” layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed. KW - Additive manufacturing KW - 3D printing KW - Digital manufacturing KW - Rapid prototyping KW - Rapid manufacturing Y1 - 2020 SN - 978-3-030-58960-8 U6 - http://dx.doi.org/10.1007/978-3-030-58960-8_1 SP - 1 EP - 22 PB - Springer CY - Cham ER -