TY - JOUR A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Performance evaluation of skill-based order-assignment in production environments with multi-agent systems JF - IEEE Journal of Emerging and Selected Topics in Industrial Electronics N2 - The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models. KW - cyber-physical production systems KW - event-based simulation KW - multi-agent systems KW - digital factory KW - industrial agents Y1 - 2021 U6 - https://doi.org/10.1109/JESTIE.2021.3108524 SN - 2687-9735 IS - Early Access PB - IEEE CY - New York ER - TY - CHAP A1 - Schleupen, Josef A1 - Engemann, Heiko A1 - Bagheri, Mohsen A1 - Kallweit, Stephan A1 - Dahmann, Peter T1 - Developing a climbing maintenance robot for tower and rotor blade service of wind turbines T2 - Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16) Y1 - 2017 SN - 978-3-319-49058-8 U6 - https://doi.org/10.1007/978-3-319-49058-8_34 N1 - Advances in Robot Design and Intelligent Control ; Vol. 540 SP - 310 EP - 319 PB - Springer CY - Cham ER - TY - CHAP A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Ning, Chuanfang A1 - Anwar, Saqib T1 - AutoSynPose: Automatic Generation of Synthetic Datasets for 6D Object Pose Estimation T2 - Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020 N2 - We present an automated pipeline for the generation of synthetic datasets for six-dimension (6D) object pose estimation. Therefore, a completely automated generation process based on predefined settings is developed, which enables the user to create large datasets with a minimum of interaction and which is feasible for applications with a high object variance. The pipeline is based on the Unreal 4 (UE4) game engine and provides a high variation for domain randomization, such as object appearance, ambient lighting, camera-object transformation and distractor density. In addition to the object pose and bounding box, the metadata includes all randomization parameters, which enables further studies on randomization parameter tuning. The developed workflow is adaptable to other 3D objects and UE4 environments. An exemplary dataset is provided including five objects of the Yale-CMU-Berkeley (YCB) object set. The datasets consist of 6 million subsegments using 97 rendering locations in 12 different UE4 environments. Each dataset subsegment includes one RGB image, one depth image and one class segmentation image at pixel-level. Y1 - 2020 SN - 978-1-64368-137-5 U6 - https://doi.org/10.3233/FAIA200770 N1 - Frontiers in Artificial Intelligence and Applications. Vol 332 SP - 89 EP - 97 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Cönen, Patrick A1 - Dawar, Harshal T1 - OMNIVIL - an autonomous mobile manipulator for flexible production JF - Sensors Y1 - 2020 SN - 1424-8220 U6 - https://doi.org/10.3390/s20247249 N1 - Special issue: Sensor Networks Applications in Robotics and Mobile Systems VL - 20 IS - 24, art. no. 7249 SP - 1 EP - 30 PB - MDPI CY - Basel ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamified Virtual Reality Training Environment for the Manufacturing Industry T2 - Proceedings of the 2020 19th International Conference on Mechatronics – Mechatronika (ME) N2 - Industry 4.0 imposes many challenges for manufacturing companies and their employees. Innovative and effective training strategies are required to cope with fast-changing production environments and new manufacturing technologies. Virtual Reality (VR) offers new ways of on-the-job, on-demand, and off-premise training. A novel concept and evaluation system combining Gamification and VR practice for flexible assembly tasks is proposed in this paper and compared to existing works. It is based on directed acyclic graphs and a leveling system. The concept enables a learning speed which is adjustable to the users’ pace and dynamics, while the evaluation system facilitates adaptive work sequences and allows employee-specific task fulfillment. The concept was implemented and analyzed in the Industry 4.0 model factory at FH Aachen for mechanical assembly jobs. Y1 - 2020 U6 - https://doi.org/10.1109/ME49197.2020.9286661 N1 - 2020 19th International Conference on Mechatronics – Mechatronika (ME), Prague, Czech Republic, December 2–4, 2020 SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - 10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link T2 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS) N2 - The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies. KW - 10BASE-T1L KW - Ethernet KW - Field device KW - Sensors KW - IO-Link Y1 - 2022 SN - 978-1-6654-1086-1 SN - 978-1-6654-1087-8 U6 - https://doi.org/10.1109/WFCS53837.2022.9779176 N1 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), 27-29 April 2022, Pavia, Italy PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - https://doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems, Jun 29, 2022 - Jul 01, 2022, Lugano, Switzerland VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022: Wissenstransfer im Spannungsfeld von Autonomisierung und Fachkräftemangel N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - https://doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022 CY - Leipzig ER - TY - JOUR A1 - Cheng, Chi-Tsun A1 - Wollert, Jörg A1 - Chen, Xi A1 - Fapojuwo, Abraham O. T1 - Guest Editorial : Circuits and Systems for Industry X.0 Applications JF - IEEE Journal on Emerging and Selected Topics in Circuits and Systems Y1 - 2023 U6 - https://doi.org/10.1109/JETCAS.2023.3278843 SN - 2156-3357 (Print) SN - 2156-3365 (Online) VL - 13 SP - 457 EP - 460 PB - IEEE CY - New York ET - 2 ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER -