TY - GEN A1 - Gebhardt, Andreas T1 - Short course on rapid prototyping N2 - Rapid Prototyping Technology: Types of models, rapid prototyping processes, prototyper Fundamentals of rapid prototyping Industrial rapid prototyping technology: Stereolithography, (Selective) laser sintering ((S)LS), Layer laminate manufacturing (LLM), Fused layer modeling (FLM), Three dimensional printing (3DP) KW - Rapid Prototyping KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Zusammenfassung der Inhalte der Veranstaltung Rapid Prototyping zur Vorbereitung auf die schriftliche Klausur N2 - Definition, Beschreibung der verschiedenen Verfahren, Anwendungsbeispiele KW - Rapid Prototyping KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Rapid Prototyping N2 - Übungsklausur KW - Rapid Prototyping KW - Übungsklausur KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Werkstoffkunde III : Werkstoff- und Verfahrenskunde für die spanlosen Fertigungsverfahren, Pulvermetallurgie, Oberflächentechnik, Abtragen ; Skript zur Vorlesung N2 - Werkstoff- und Verfahrenskunde für die spanlosen Fertigungsverfahren, Pulvermetallurgie, Oberflächentechnik, Abtragen Diffusionsvorgänge, Änderung der Stoffeigenschaften, Schutzschichtenbildung, Oberflächenhärten, Pulver-basierende Fertigungsverfahren (Pulvermetallurgie), Abtragende Verfahren KW - Werkstoffkunde KW - Spanlose Fertigungsverfahren KW - Pulvermetallurgie KW - Oberflächentechnik KW - Abtragen Y1 - 2005 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Prototyping für metallische Werkstücke: Direkte und indirekte Verfahren N2 - Die generative Herstellung von Kunststoffbauteilen hat im Gewand des Rapid Prototyping die Produktentwicklung nachhaltig positiv beeinflusst und ist im Begriff als Rapid Manufacturing die Fertigung zu revolutionieren. Je mehr sich die besonderen Eigenschaften generativ gefertigter Kunststoffbauteile herumsprechen, desto lauter wird der Ruf nach Metallbauteilen. Die Entwicklung entsprechender Prozesse läuft auf Hochtouren, kann aber bisher aber erst vereinzelt Erfolge vorweisen. Dabei wären es gerade die Metallbauteile, die ausgestattet mit den besonderen Merkmalen generativ gefertigter Werkstücke, in vielen Branchen einen deutlichen Entwicklungsschub auslösen könnten. Für den potenziellen Anwender ist dabei besonders verwirrend, dass die unterschiedlichsten Ansätze nebeneinander verfolgt werden. Im Folgenden soll daher der Versuche unternommen werden, dieses weite Feld systematisiert darzustellen und Möglichkeiten und Trends zu erläutern. N2 - The generative manufacturing of plastic components via rapid prototyping has positively affected the product development. As 'rapid manufacturing' the method is about to revolutionize the manufacturing in general. The more the special characteristics of generative manufactured plastic components are getting about, the louder becomes the call for generative manufactured metal components. The development of analogical processes runs on full speed. So far however, only sporadic successes can be registered. Though there are in particular the metal components which could, equipped with the special characteristics of generative manufactured components, initiate a developmental boost in many industries. For the potential operator it is particularly confusing that the different approaches are traced parallel. Therefore in the following contribution the attempt is undertaken not only to represent this wide field in a systematic way but to describe possibilities and trends as well. KW - Rapid prototyping KW - Rapid Prototyping KW - Rapid Manufacturing KW - generative Fertigungsverfahren KW - Werkzeugeinsätze KW - Werkzeuge KW - Rapid prototyping KW - rapid manufacturing Y1 - 2005 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Manufacturing - eine interdisziplinäre Strategie N2 - Als um 1987 ein Verfahren namens Stereolithographie und ein Stereolithography Apparatus (SLA) vorgestellt wurden, war der Traum von der Herstellung beliebiger dreidimensionaler Bauteile direkt aus Computerdaten und ohne bauteilspezifische Werkzeuge Realität geworden. Ein Anwendungs-Szenario wurde gleich mitgeliefert. Diese Technologie würde es möglich machen, die gesamte Ersatzteilversorgung der Amerikanischen Pazifikflotte mittels ein paar dieser Maschinen, umfangreicher Datenstätze und genügend Rohmaterial vor Ort auf einem Flugzeugträger direkt nach Bedarf zu fertigen. Diese Vorstellung definierte schon damals die direkte digitale Fertigung, das Rapid Manufacturing. In der Realität bestanden die mit diesem Verfahren hergestellten Bauteile nur aus Kunststoff, waren ungenau, bruchempfindlich und klebrig und allein in der Produktentwicklung, eben als Prototypen zu benutzen. Sie waren schnell verfügbar, weil zu Ihrer Herstellung keine Werkzeuge benötigt wurden. Folgerichtige und zudem modern hießen sie: Rapid Prototyping. Rapid Prototyping wurde schnell zum Synonym eines neuen Zweiges der Fertigungstechnik, der Generativen Fertigungstechnik. Die weitere Entwicklung brachte neue Verfahren, höhere Genauigkeiten, verbesserte Werkstoffe und neue Anwendungen. Die Herstellung von Negativen, also Werkzeugen, mit dem gleichen Verfahren wurde marketing-getrieben Rapid Tooling genannt und als die ersten Bauteile nicht mehr als Prototypen, sondern als Endprodukte eingesetzt wurden, nannte man dies Rapid Manufacturing - das Ziel war erreicht. War das Ziel wirklich erreicht? Ist es Rapid Manufacturing, wenn ein generativ gefertigtes Bauteil die gewünschte Spezifikation erreicht? Was muss passieren, damit aus dem Phänomen Rapid Prototyping eine Strategie wird, die geeignet ist, einen Paradigmenwechsel von der heutigen Hersteller-induzierten Massenproduktion von Massenartikeln zur Verbraucher-induzierten (und verantworteten) Massenproduktion von Einzelteilen für jedermann ermöglichen und möglicherweise unsere Arbeits- und Lebensformen tiefgreifend zu beeinflussen? Im Beitrag wird der Begriff der (Fertigungs-) Strategie „Rapid Manufacturing“ näher beleuchtet. Es wird diskutiert, welche Maßnahmen auf der technischen und der operative Ebene getroffen werden müssen, damit die generative Fertigungstechnik im Sinne dieser Strategie umgesetzt werden kann. Beispiele belegen, dass diese Entwicklung bereits begonnen hat und geben Anregungen für eine konstruktive Diskussion auf der RapidTech 2006. N2 - As a process called stereolithography and a stereolithography apparatus (SLA) was presented in 1987, the dream of manufacturing any three-dimensional component directly from computer data and without component-specific tools became reality. An application scenario was supplied at the same time. This technology would make it possible to produce the entire spare parts requirement of the American Pacific Fleet merely through the use of a couple of such machines, extensive datasets and enough raw material on board an aircraft carrier directly as required. This image defined direct digital fabrication, rapid manufacturing, even at that time. In reality, this procedure only managed to produce components in plastic which were imprecise, fragile and sticky and only usable as prototypes in product development. They were rapidly available, because no tools were required for their manufacture. Consequentially, they are now known as Rapid Prototyping in modern jargon. Rapid Prototyping quickly became a synonym for a new branch of production engineering known as generative production engineering. Continued development brought new processes, improved accuracy, improved materials and new applications. The manufacturing of negatives, in other words tools, using the same procedure was quickly named rapid tooling by the marketing sector, and once the first components were used as final products instead of just prototypes the process was renamed "rapid manufacturing" - the goal had been reached. Was the goal really reached? Is it rapid manufacturing if a generatively manufactured component reaches the required specifications? What has to happen so that the rapid prototyping phenomenon becomes a strategy which is suitable for enabling the paradigm change from current manufacture-induced mass production of mass articles to consumer-induced (and consumer-responsible) mass production of single parts for anyone, and in all possibility makes dramatic changes in our way of working and living? The lecture includes detailed information about the (production) strategy term "rapid manufacturing". We will be discussing which measures need to be taken on the technical and operative level so that generative production engineering can be implemented in the sense of this strategy. Examples will show that this development has already started, and should provoke stimulation leading to constructive discussion during RapidTech 2006. KW - Rapid prototyping KW - Rapid Manufacturing KW - Rapid Prototyping KW - Stereolithographie KW - Generative Fertigungstechnik KW - Rapid prototyping KW - rapid manufacturing Y1 - 2006 ER - TY - CHAP A1 - Gebhardt, Andreas T1 - Technology Diffusion through a Multi-Level Technology Transfer Infrastructure. Contribution to the 1st. All Africa Technology Diffusion Conference Boksburg, South Africa June 12th - 14th 2006 N2 - Table of contents 1. Introduction 2. Multi-level Technology Transfer Infrastructure 2.1 Level 1: University Education – Encourage the Idea of becoming an Entrepreneur 2.2 Level 2: Post Graduate Education – Improve your skills and focus it on a product family. 2.3 Level 3: Birth of a Company – Focus your skills on a product and a market segment. 2.4 Level 4: Ready to stand alone – Set up your own business 2.5 Level 5: Grow to be Strong – Develop your business 2.6 Level 6: Competitive and independent – Stay innovative. 3. Samples 3.1 Sample 1: Laser Processing and Consulting Centre, LBBZ 3.2 Sample 2: Prototyping Centre, CP 4. Funding - Waste money or even lost Money? 5. Conclusion KW - Technologietransfer KW - technology transfer KW - technology diffusion Y1 - 2006 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Generative Manufacturing of Ceramic Parts "Vision Rapid Prototyping" N2 - Table of Contents Introduction 1. Generative Manufacturing Processes 2. Classification of Generative Manufacturing Processes 3. Application of Generative Processes on the Fabrication of Ceramic Parts 3.1 Extrusion 3.2 3D-Printing 3.3 Sintering – Laser Sintering 3.4 Layer-Laminate Processes 3.5 Stereolithography (sometimes written: Stereo Lithography) 4. Layer Milling 5. Conclusion - Vision KW - Rapid prototyping KW - Rapid Technologie KW - Rapid Prototyping Y1 - 2006 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Grundlagen des Rapid Prototyping: Eine Kurzdarstellung der Rapid Prototyping Verfahren N2 - Generative Verfahren sind seit etwa 1987 in den USA und seit etwa 1990 in Europa und Deutschland in Form von Rapid Prototyping Verfahren bekannt und haben sich in dieser Zeit von eher als exotisch anzusehenden Modellbauverfahren zu effizienten Werkzeugen für die Beschleunigung der Produktentstehung gewandelt. Mit der Weiterentwicklung der Verfahren und insbesondere der Materialien wird mehr und mehr das Feld der direkten Anwendung der Rapid Technologie zur Fertigung erschlossen. Rapid Technologien werden daher zum Schlüssel für neue Konstruktionssystematiken und Fertigungsstrategien. N2 - Generative procedures have been known under the term of 'rapid prototyping method' for about 18 years in the USA and about 15 years in Europe and Germany. In this time they changed from what was regarded as being a rather exotic way of model construction procedures to a very efficient and useful instrument for faster product manufacturing. In the course of the further development of the methods, and in particular the materials, the field for direct application of rapid technology opens up for manufacturing. Therefore rapid technologies become the key for new construction systematics and manufacturing strategies. KW - Rapid prototyping KW - Laserstrahlsintern KW - 3D-Printing KW - Extrusionsverfahren KW - Gießharzwerkzeuge KW - Laminat Verfahren KW - Lasersintern KW - Stereolithographie KW - Vakuumgießen KW - FLM KW - Fused deposition modelling KW - Laminated-Object-Manufacturing Y1 - 2004 ER - TY - CHAP A1 - Gebhardt, Andreas T1 - Generative Fertigungsverfahren in der Produktentwicklung T2 - Spritzgießen 2015 Y1 - 2015 SN - 978-3-18-234336-3 SP - 1 EP - 19 PB - VDI-Verlag CY - Düsseldorf ER - TY - JOUR A1 - Gebhardt, Andreas T1 - 3D-Druck ist überall. Modische Accessoires, Kleidung, Medikamente, Nahrungsmittel, Autos, Häuser, Waffen, Büsten, Musikinstrumente - alles geht JF - Kunststoffe Y1 - 2015 SN - 0023-5563 VL - 105 IS - 10 SP - 62 EP - 70 PB - Hanser CY - München ER - TY - BOOK A1 - Gebhardt, Andreas T1 - Additive Fertigungsverfahren : Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion Y1 - 2016 SN - 978-3-446-44401-0 ; 978-3-446-44539-0 U6 - http://dx.doi.org/10.3139/9783446445390 N1 - Verfügbar in der Bereichsbibliothek Eupener Straße unter 21 ZHU 25(5); verfügbar in der Bereichsbibliothek Jülich unter 61 ZHU 26(5) PB - Hanser CY - München ET - 5. aktualisierte und erweiterte Auflage ER - TY - JOUR A1 - Gartzen, Johannes A1 - Lingens, Hans A1 - Schönbohm, J. A1 - Baumjohann, F. A1 - Gebhardt, Andreas T1 - Laserhärten - im Verbund möglich. Forschungsverbund Lasertechnik NRW auf der Suche nach neuen Laseranwendungen JF - Technica, Rupperswil. 42 (1993), H. 24 Y1 - 1993 SN - 0040-866X SP - 14 EP - 18 ER - TY - JOUR A1 - Gartzen, Johannes A1 - Gebhardt, Andreas A1 - Anger, A. A1 - Petschke, U. A1 - Lingens, Hans T1 - Laserstrahlschweißen mit Schweißdraht von Wärmetauschern mit hohem Wirkungsgrad JF - Proceedings : Aachen, Germany, 31st October - 4th November, 1994 / 27th ISATA Y1 - 1994 SN - 0-947719-64-4 N1 - Konferenz-Einzelbericht: ISATA, 27. Internat. Symp. on Automotive Technology & Automation SP - 397 EP - 403 PB - Automotive Automation CY - Croydon ER - TY - CHAP A1 - Gabrielli, Roland Antonius A1 - Seelmann, Jürgen A1 - Großmann, Agnes A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Middendorf, Peter A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - System Architecture of a Lunar Industry Plant Using Regolith T2 - Conference Contribution for the 30th ISTS, Kobe, Japan, 04.07.-10.07.2015 Y1 - 2015 ER - TY - CHAP A1 - Gabrielli, Roland Antonius A1 - Mathies, Johannes A1 - Großmann, Agnes A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Middendorf, Peter A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith T2 - International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan Y1 - 2015 ER - TY - JOUR A1 - Fateri, Miranda A1 - Hötter, Jan-Steffen A1 - Gebhardt, Andreas T1 - Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting JF - Physics Procedia N2 - Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.phpro.2012.10.062 SN - 1875-3892 N1 - Part of special issue "Laser Assisted Net shape Engineering 7 (LANE 2012)" VL - 39 SP - 464 EP - 470 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Thümmler, Stefan A1 - Thurn, Laura T1 - Experimental investigation on selective laser melting of glass JF - Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014 Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.phpro.2014.08.118 SN - 1875-3892 (E-Journal); 1875-3884 (Print) VL - 56 (2014) SP - 357 EP - 364 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive Manufacturing of Drainage Segments for Cooling System of Crucibles Melting Furnaces T2 - International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA N2 - The cooling process in induction based crucible melting furnaces for Industrial applications is one of the important and challenging factors in production and safety engineering. Accordingly, proper implementation of the cooling system of the furnace using optimum cooling guides and fail-safe features are critical in order to improve the safety of the process. Regarding this, manufacturing of porous material with high electrical isolation for the drainage segments of the cooling channels is examined in this study. Consequently, various geometries with different porosities using glass and ceramic powder are fabricated using Selective Laser Sintering (SLS) process. The manufactured parts are examined in a prototype furnace testing and the feasibility of the SLS manufacturing of parts for this application is discussed. Y1 - 2015 ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive manufacturing of drainage segments for cooling system of crucible melting furnaces T2 - Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, ICACC 15, 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, US, Jan 25-30, 2015 Y1 - 2015 U6 - http://dx.doi.org/10.1002/9781119211662.ch14 SN - 0196-6219 SP - 123 EP - 131 PB - Wiley CY - Hoboken ER -