TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Werkstoffkunde 3 N2 - Übungsklausur KW - Werkstoffkunde KW - Fertigungsverfahren KW - Übungsklausur Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Regelungstechnik N2 - Übungsklausur KW - Regelungstechnik KW - Übungsklausur Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Rapid Prototyping N2 - Übungsklausur KW - Rapid Prototyping KW - Übungsklausur KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Lasertechnologie N2 - Übungsklausur KW - Lasertechnologie KW - Übungsklausur Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Übungsklausur zum Fach Fertigungsverfahren 1 N2 - Übungsklausur KW - Fertigungsverfahren KW - Übungsklausur Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Zusammenfassung der Inhalte der Veranstaltung Rapid Prototyping zur Vorbereitung auf die schriftliche Klausur N2 - Definition, Beschreibung der verschiedenen Verfahren, Anwendungsbeispiele KW - Rapid Prototyping KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Zusammenfassung der Inhalte der Veranstaltung Lasertechnologie zur Vorbereitung auf die schriftliche Klausur N2 - Grundlagen und Anwendungen KW - Lasertechnologie Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Werkstoffkunde III : Werkstoff- und Verfahrenskunde für die spanlosen Fertigungsverfahren, Pulvermetallurgie, Oberflächentechnik, Abtragen ; Skript zur Vorlesung N2 - Werkstoff- und Verfahrenskunde für die spanlosen Fertigungsverfahren, Pulvermetallurgie, Oberflächentechnik, Abtragen Diffusionsvorgänge, Änderung der Stoffeigenschaften, Schutzschichtenbildung, Oberflächenhärten, Pulver-basierende Fertigungsverfahren (Pulvermetallurgie), Abtragende Verfahren KW - Werkstoffkunde KW - Spanlose Fertigungsverfahren KW - Pulvermetallurgie KW - Oberflächentechnik KW - Abtragen Y1 - 2005 ER - TY - CHAP A1 - Merten, Sabine A1 - Kämper, Klaus-Peter A1 - Brill, Manfred A1 - Picard, Antoni A1 - Cassel, Detlev A1 - Jentsch, Andreas A1 - Rollwa, Markus T1 - Virtuelle Sensor-Fertigung: Hightech mit LabVIEW N2 - Eine neue Generation von Praktika an Hochschulen wächst heran. Moderne Wege beim Verstehen und Erlernen naturwissenschaftlicher Zusammenhänge sowie industrieller Fertigungsprozesse sind gefordert. Das Technologiepraktikum „Virtuelle Sensor- Fertigung“, entwickelt im Verbundprojekt INGMEDIA an den Fachhochschulen Aachen und Zweibrücken, trägt als neuartiges Lern- und Lehrmodul dieser Forderung Rechnung. Die Studierenden lernen einen vollständigen Fertigungsprozess mit Hilfe von virtuellen, in LabVIEW programmierten Maschinen kennen, bevor sie die reale Prozesskette im Reinraum durchführen. N2 - A new generation of university laboratory courses is presently being developed. Modern concepts for the understanding and learning of applied science and industrial fabrication processes are required. The technology course “Fabrication of a microsensor”, developed by the Universities of Applied Sciences Aachen and Zweibrücken in the joint research project INGMEDIA, represents a new approach towards education in high technology production. The students learn the operation of the complex microfabrication line with the help of virtual fabrication machines, programmed in LabVIEW, before they perform the actual process in a genuine clean room. KW - LabVIEW KW - Virtuelle Sensor-Fertigung KW - Fertigungsprozess KW - virtuelle Maschinen KW - virtual sensor fabrication KW - manufacturing process KW - virtual KW - virtual machines Y1 - 2003 ER - TY - BOOK A1 - Merten, Sabine T1 - Verbesserung der Ausbildung in der Mikrosystemtechnik - virtuelle Labore bereiten auf die Herstellung realer Drucksensoren vor (2 Fassungen: konvertiert und original N2 - Die Ausbildung in Hochtechnologien wie beispielsweise der Mikrosystemtechnik ist oft durch einen hohen Grad an Komplexität charakterisiert. Damit verbunden sind hohe Kosten für die Errichtung und den Betrieb der speziellen Laborräume und ihre häufig geringe Verfügbarkeit für die Studierenden. Zukünftige Ingenieure sammeln während ihrer Ausbildung aus diesen Gründen nur in beschränktem Umfang praktische Erfahrungen. Die Industrie hingegen fordert Personal mit hoher fachlicher Kompetenz, also fundiertem theoretischen Wissen und umfangreichen praktischen Kenntnissen. Dieser Diskrepanz – qualifizierte Ingenieure auf der einen Seite und eine eher theoretisch ausgerichtete Ausbildung auf der anderen Seite – wird mit einem neuen Blended-Learning-Konzept für MST-Technologiepraktika begegnet. Lernende werden über ein virtuelles Labor, das einen echten Reinraum mit realen Anlagen simuliert, intensiv auf reale Laborpraktika vorbereitet. Dabei geht es im virtuellen Labor gleichermaßen um die Vermittlung von Theorie und Praxis. Nur trainierte Teilnehmer mit einer intensiven Vorbereitung sind in der Lage, relativ eigenständig ein echtes MST-Bauteil innerhalb des anschließenden einwöchigen Laborkurses zu fertigen. Die Wirksamkeit des Konzeptes und die Steigerung des Lernerfolges durch die kombinierten virtuellen und realen Laborkurse wurden im Rahmen der Dissertation begleitend untersucht. Die Ergebnisse flossen direkt in die Weiterentwicklung der Technologiepraktika ein. Die Konzepte und Erkenntnisse sind zudem sehr interessant für die Entwicklung von Blended-Learning-Angeboten in ähnlichen oder anderen Fachgebieten sowie für weitere Bildungseinrichtungen. (Die Dissertation liegt hier in 2 Fassungen vor: Die Originalfassung ist nur bei guter Rechnerausstattung und guter Netzanbindung nutzbar, die konvertierte Fassung ist unverändert, allerdings sind Qualitätseinbußen beim Ausdruck einiger Grafiken möglich) N2 - Education in high technologies, like e.g. Microsystems technology, is usually characterized by a high degree of complexity. In addition it is usually connected with large economic efforts for invest, operation and maintenance of the special laboratory facilities. The access to such facilities for educational purposes is often quite limited. Therefore engineering students rather rarely gather practical experience in such technologies during their university studies. In contrast, industry has a large demand for engineers with high professional competence, i.e. profound theoretical knowledge combined with substantial practical experience. The newly developed blended learning concept for MST laboratory training tries to bridge the gap between the need for qualified engineers and the more theoretical university education. The learners prepare intensively for real hands-on clean room trainings with a virtual technology laboratory, i.e. a computer simulation of the clean room machines and the corresponding processes. In the virtual technology laboratory the students brush up their theoretical knowledge and at the same time learn to operate the complex clean room machines. Only well trained and intensively prepared students are capable to produce a fully functional MST component within a compact clean room laboratory course of only one week duration and an only modest amount of supervision. The effectivity of this concept and the increase of the learning success due to the specific mixture of virtual and real laboratory sessions has been accompanied and analysed by this dissertation. The results have been used to further improve the laboratory courses. Concepts and results are also very attractive for comparable blended learning proposals in other technical disciplines. KW - Mikrosystemtechnik KW - Virtuelles Laboratorium KW - Lernprogramm KW - Hochschule / Lehre / Evaluation KW - Computersimulation KW - Drucksensor KW - Blended-Learning KW - Reinraumpraktikum KW - blended learning KW - hands-on cleanroom training Y1 - 2005 N1 - Zugl.: Saarbrücken, Univ., Diss., 2005 ER - TY - THES A1 - Ferraioli, Luigi T1 - Validierung einer Simulationsumgebung für Umfeldsensorik von Schienenfahrzeugen N2 - Diese Bachelorarbeit befasst sich mit der digitalen Nachbildung eines Testgeländes sowie eines Schienenfahrzeugs in der Simulationsumgebung Gazebo. Der Schwerpunkt liegt auf der präzisen Abbildung der Umfeldsensorik anhand eines realen Schienenfahrzeuges. Ziel ist die Erzeugung äquivalenter Messdaten der Simulationsumgebung und des realen Schienenfahrzeuges unter gleichen Einsatzbedingungen. Dazu werden unterschiedliche Verfahren eingesetzt, um die Parameter der einzelnen Sensorik so zu konfigurieren, dass die Messergebnisse mit den Messdaten der realen Sensorik konvergieren. Die Ergebnisse der Messdaten zeigen, dass obwohl die Simulationsumgebung einige physikalische Materialeigenschaften nicht berücksichtigt, eine präzise Abbildung der Sensorik und geometrischen Strukturen des Testgeländes möglich ist. Darüber hinaus ermöglicht die Kombination von Gazebo und ROS2 Integrationstests und die Entwicklung von Softwareanwendungen sowohl in der Simulation als auch auf dem realen Schienenfahrzeug. Eine realitätsnahe und reproduzierbare Auswertung der Sensormessdaten der Simulationsumgebung für Schienenfahrzeuge ist somit realisierbar. Y1 - 2023 PB - FH Aachen CY - Aachen ER - TY - GEN A1 - Kämper, Klaus-Peter T1 - Skript zur Vorlesung Mikrotechnik 1 N2 - Kennwortgeschützter Zugang nur für Studierende bei Prof. Dr. Klaus-Peter Kämper. Sommersemester 2007. Version 2.3 vom 27.02.2007 I-8, 484 S.: Ill.; graph. Darst. Inhaltsverzeichnis: 1 Einführung: Was ist Mikrotechnik? 2 Fertigung im Reinraum 3 Der Werkstoff Silizium 4 Dünnschichttechnologie 5 Photolithographie 6 Ätztechnologie 7 „Bulk Micromachining“ 8 „Surface Micromachining“ 9 Trockenätzen tiefer Mikrostrukturen 10 LIGA-Technik 11 Mikrofunkenerosion 12 Laser in der Mikrotechnik 13 Mechanische Mikrofertigung 14 Photostruktuierbares Glas 15 Aufbau- und Verbindungstechnik KW - Mikrosystemtechnik Y1 - 2007 ER - TY - JOUR A1 - Gebhardt, Andreas A1 - Brücker, Christoph A1 - Schmidt, Frank-Michael T1 - RP gestützte Herstellung komplexer transparenter Hohlräume für die Strömungsanalyse N2 - Die Berechnung der Durchströmung von Bauteilen ist gegenüber derjenigen von umströmten Bauteilen deutlich im Hintertreffen. Das liegt vor allem an der fehlenden Verfügbarkeit geeigneter optisch transparenter Modellkanäle für die experimentelle Analyse. Der Beitrag stellt ein Verfahren zur Herstellung transparenter durchströmter Geometrien auf der Basis generativ gefertigter Urmodelle vor. Damit können beliebig komplexe Innenströmungen optisch analysiert werden. Anhand von zwei Beispielen aus der Medizin, der Modellierung der oberen Atemwege und des Bronchialbaums, wird das Verfahren vorgeführt. Der generative Bauprozess mittels 3D-Printing wird beschrieben und die Abformung in transparentem Silikon gezeigt. Schließlich werden beispielhaft der Messaufbau und Ergebnisse der Anwendung vorgestellt. Das Verfahren bildet die Grundlage für die Analyse und Berechnung komplexer Innenströmungen und trägt somit zur Verbesserung zahlreicher technischer Anwendungen bei. N2 - Unlike the flow around technical products the interior flow is not understood very well. That’s mainly because of a lack of suitable transparent investigation tunnels that are needed to apply optical methods. The paper proposes a procedure to make precise complex hollow structures from a highly transparent material using masters from generative or Rapid Prototyping processes. Taking two examples from the medical field, the upper human airways and the bronchial tree, the entire process is shown. The 3D Printing build process is illustrated as well as the silicon casting process. Finally the measuring equipment is demonstrated and sample results are given. The process establishes the basis for the investigation and calculation of complex interior flow pattern and therefore contributes to a better understanding and consequently improvement of appropriate technical products. KW - Rapid prototyping KW - Rapid Prototyping KW - Strömungsanalyse KW - Innenströmung KW - Modellkanäle KW - 3D-Printing Y1 - 2005 ER - TY - THES A1 - Keller, Simon Mark T1 - Risikoanalyse einer bordautonomen Schienenfahrzeugortung mittels GNSS N2 - Bei Schienenfahrzeugen, die mit dem Zugsicherungssystem ETCS betrieben sind, wird die Odometrie durch eine diskrete Ortung mittels physischen Balisen zurückgesetzt. Diese Arbeit befasst sich mit der Innovation von virtuellen Balisen. Virtuelle Balisen, können eingesetzt werden, um physische, im Gleisbett montierte Balisen zu ersetzen. Durch den Einsatz von virtuellen Balisen soll der Infrastrukturausbau von ETCS vorangetrieben werden, indem sie als virtuelle Komponente auf Schienenfahrzeugen eingesetzt werden. Im Rahmen dieser Arbeit wird die Fragestellung beantwortet, ob eine bordautonome Zugortung mittels virtuellen Balisen in einem ausgewählten Szenario mit einem akzeptablen Risiko verbunden ist? Das Szenario besteht aus einem Schienenfahrzeug, welches mit dem Zugsicherungssystem ETCS Level 2 auf einer eingleisigen Nebenstrecke betreiben wird. Hierzu werden zunächst die Grundlagen von ETCS und der satellitenbasierten Ortung erläutert. Des Weiteren werden die Grundlagen des CSM Prozesses und der expliziten Risikoabschätzung eingeführt. Aufbauend auf diesen Grundlagen wird der CSM Prozess angewandt und dabei eine Systemdefinition mit den Schnittstellen des Systems zur Umwelt erstellt. Mit der Hazop-Methode werden die Gefährdungen der Schnittstellen erfasst und beurteilt. Die sicherheitsrelevanten Gefährdungen werden in einer FMEA bewertet. In der folgenden Diskussion werden sicherheitsrelevante Gefährdungen nochmals betrachtet. Das Ergebnis der Arbeit ist, dass im ausgewählten Szenario, unter der Verwendung der CSM-Prozesse und der industriell anerkannten Methoden Hazop und FMEA, die Integration der Board-autonomen-Ortung mit einem akzeptablen Risiko verbunden ist. Y1 - 2022 PB - FH Aachen CY - Aachen ER - TY - GEN A1 - Gebhardt, Andreas T1 - Regelungstechnik : Skript zur Vorlesung N2 - Prinzip und Geschichte der Regelungstechnik; technische Steuerungen und Regelungen; Definition und Stellung innerhalb der Automatisierungstechnik. Elementare Übertragungsglieder, Streckentypen, typische Regler (unstetige Regler, stetige Regler), Reglerentwurf (einfache Verfahren, einschließlich Faustformelverfahren). Stabilitätsanalyse von Regelkreisen (einfache Verfahren, ohne Herleitung der Beweise) KW - Regelungstechnik Y1 - 2005 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Prototyping für metallische Werkstücke: Direkte und indirekte Verfahren N2 - Die generative Herstellung von Kunststoffbauteilen hat im Gewand des Rapid Prototyping die Produktentwicklung nachhaltig positiv beeinflusst und ist im Begriff als Rapid Manufacturing die Fertigung zu revolutionieren. Je mehr sich die besonderen Eigenschaften generativ gefertigter Kunststoffbauteile herumsprechen, desto lauter wird der Ruf nach Metallbauteilen. Die Entwicklung entsprechender Prozesse läuft auf Hochtouren, kann aber bisher aber erst vereinzelt Erfolge vorweisen. Dabei wären es gerade die Metallbauteile, die ausgestattet mit den besonderen Merkmalen generativ gefertigter Werkstücke, in vielen Branchen einen deutlichen Entwicklungsschub auslösen könnten. Für den potenziellen Anwender ist dabei besonders verwirrend, dass die unterschiedlichsten Ansätze nebeneinander verfolgt werden. Im Folgenden soll daher der Versuche unternommen werden, dieses weite Feld systematisiert darzustellen und Möglichkeiten und Trends zu erläutern. N2 - The generative manufacturing of plastic components via rapid prototyping has positively affected the product development. As 'rapid manufacturing' the method is about to revolutionize the manufacturing in general. The more the special characteristics of generative manufactured plastic components are getting about, the louder becomes the call for generative manufactured metal components. The development of analogical processes runs on full speed. So far however, only sporadic successes can be registered. Though there are in particular the metal components which could, equipped with the special characteristics of generative manufactured components, initiate a developmental boost in many industries. For the potential operator it is particularly confusing that the different approaches are traced parallel. Therefore in the following contribution the attempt is undertaken not only to represent this wide field in a systematic way but to describe possibilities and trends as well. KW - Rapid prototyping KW - Rapid Prototyping KW - Rapid Manufacturing KW - generative Fertigungsverfahren KW - Werkzeugeinsätze KW - Werkzeuge KW - Rapid prototyping KW - rapid manufacturing Y1 - 2005 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Rapid Prototyping : Werkzeuge für die schnelle Produktentwicklung N2 - Grundlagen der Rapid Prototyping-Verfahren Industrielle Rapid Prototyping Verfahren: Stereolithographie (SL), Lasersintern (SLS), Schicht- (Laminat) Verfahren (LLM), Extrusions-Verfahren (FLM), 3D-Printing (3DP) Abformverfahren und Folgeprozesse: Vakuumgießen, Gießharz-Werkzeuge, Vorserienwerkzeuge aus Aluminium KW - Rapid Prototyping Y1 - 2005 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Manufacturing - eine interdisziplinäre Strategie N2 - Als um 1987 ein Verfahren namens Stereolithographie und ein Stereolithography Apparatus (SLA) vorgestellt wurden, war der Traum von der Herstellung beliebiger dreidimensionaler Bauteile direkt aus Computerdaten und ohne bauteilspezifische Werkzeuge Realität geworden. Ein Anwendungs-Szenario wurde gleich mitgeliefert. Diese Technologie würde es möglich machen, die gesamte Ersatzteilversorgung der Amerikanischen Pazifikflotte mittels ein paar dieser Maschinen, umfangreicher Datenstätze und genügend Rohmaterial vor Ort auf einem Flugzeugträger direkt nach Bedarf zu fertigen. Diese Vorstellung definierte schon damals die direkte digitale Fertigung, das Rapid Manufacturing. In der Realität bestanden die mit diesem Verfahren hergestellten Bauteile nur aus Kunststoff, waren ungenau, bruchempfindlich und klebrig und allein in der Produktentwicklung, eben als Prototypen zu benutzen. Sie waren schnell verfügbar, weil zu Ihrer Herstellung keine Werkzeuge benötigt wurden. Folgerichtige und zudem modern hießen sie: Rapid Prototyping. Rapid Prototyping wurde schnell zum Synonym eines neuen Zweiges der Fertigungstechnik, der Generativen Fertigungstechnik. Die weitere Entwicklung brachte neue Verfahren, höhere Genauigkeiten, verbesserte Werkstoffe und neue Anwendungen. Die Herstellung von Negativen, also Werkzeugen, mit dem gleichen Verfahren wurde marketing-getrieben Rapid Tooling genannt und als die ersten Bauteile nicht mehr als Prototypen, sondern als Endprodukte eingesetzt wurden, nannte man dies Rapid Manufacturing - das Ziel war erreicht. War das Ziel wirklich erreicht? Ist es Rapid Manufacturing, wenn ein generativ gefertigtes Bauteil die gewünschte Spezifikation erreicht? Was muss passieren, damit aus dem Phänomen Rapid Prototyping eine Strategie wird, die geeignet ist, einen Paradigmenwechsel von der heutigen Hersteller-induzierten Massenproduktion von Massenartikeln zur Verbraucher-induzierten (und verantworteten) Massenproduktion von Einzelteilen für jedermann ermöglichen und möglicherweise unsere Arbeits- und Lebensformen tiefgreifend zu beeinflussen? Im Beitrag wird der Begriff der (Fertigungs-) Strategie „Rapid Manufacturing“ näher beleuchtet. Es wird diskutiert, welche Maßnahmen auf der technischen und der operative Ebene getroffen werden müssen, damit die generative Fertigungstechnik im Sinne dieser Strategie umgesetzt werden kann. Beispiele belegen, dass diese Entwicklung bereits begonnen hat und geben Anregungen für eine konstruktive Diskussion auf der RapidTech 2006. N2 - As a process called stereolithography and a stereolithography apparatus (SLA) was presented in 1987, the dream of manufacturing any three-dimensional component directly from computer data and without component-specific tools became reality. An application scenario was supplied at the same time. This technology would make it possible to produce the entire spare parts requirement of the American Pacific Fleet merely through the use of a couple of such machines, extensive datasets and enough raw material on board an aircraft carrier directly as required. This image defined direct digital fabrication, rapid manufacturing, even at that time. In reality, this procedure only managed to produce components in plastic which were imprecise, fragile and sticky and only usable as prototypes in product development. They were rapidly available, because no tools were required for their manufacture. Consequentially, they are now known as Rapid Prototyping in modern jargon. Rapid Prototyping quickly became a synonym for a new branch of production engineering known as generative production engineering. Continued development brought new processes, improved accuracy, improved materials and new applications. The manufacturing of negatives, in other words tools, using the same procedure was quickly named rapid tooling by the marketing sector, and once the first components were used as final products instead of just prototypes the process was renamed "rapid manufacturing" - the goal had been reached. Was the goal really reached? Is it rapid manufacturing if a generatively manufactured component reaches the required specifications? What has to happen so that the rapid prototyping phenomenon becomes a strategy which is suitable for enabling the paradigm change from current manufacture-induced mass production of mass articles to consumer-induced (and consumer-responsible) mass production of single parts for anyone, and in all possibility makes dramatic changes in our way of working and living? The lecture includes detailed information about the (production) strategy term "rapid manufacturing". We will be discussing which measures need to be taken on the technical and operative level so that generative production engineering can be implemented in the sense of this strategy. Examples will show that this development has already started, and should provoke stimulation leading to constructive discussion during RapidTech 2006. KW - Rapid prototyping KW - Rapid Manufacturing KW - Rapid Prototyping KW - Stereolithographie KW - Generative Fertigungstechnik KW - Rapid prototyping KW - rapid manufacturing Y1 - 2006 ER - TY - JOUR A1 - Wollert, Jörg T1 - Rapid Application Development JF - Design & Elektronik N2 - Das IoT ist ohne eingebettete Systeme undenkbar. Erst kleine und kleinste Mikrocontroller mit intelligenten Kommunikationsschnittstellen und Anbindung ans Internet ermöglichen sinnvolles und flächendeckendes Einsammeln von Daten. Doch wie kompliziert ist der Einstieg in die Embedded-Welt? Dieser Artikel gibt Einblick, wie die »Arduino-Plattform« die Einstiegshürden für eingebettete Systeme dramatisch reduzieren kann. Y1 - 2016 SN - 0933-8667 IS - 4 SP - 8 EP - 11 PB - WEKA-Fachmedien CY - München ER - TY - JOUR A1 - Pfaff, Raphael A1 - Babilon, Katharina T1 - Railway Challenge - moderne Auflage der Rainhill Trials? JF - Eisenbahntechnische Rundschau : ETR ; Impulsgeber für das System Bahn N2 - Die IMechE Railway Challenge wird jährlich in Stapleford, Großbritannien ausgetragen. Im Rahmen der Challenge entwickeln und bauen Studierende eine Lokomotive und vergleichen sich in verschiedenen Disziplinen, darunter eine automatisierte Zielbremsung, optimale Energierückgewinnung beim Bremsen und minimale Geräuschemissionen. Neben diesen und weiteren technischen Wettbewerbsdisziplinen treten die Fahrzeuge und die Teams auch in nicht-technischen Disziplinen wie einer Business Case Challenge an. Y1 - 2023 SN - 0013-2845 N1 - Homepageveröffentlichung unbefristet genehmigt für Fachhochschule Aachen / Rechte für einzelne Downloads und Ausdrucke für Besucher der Seiten genehmigt / © DVV Media Group GmbH VL - 2023 IS - 4 SP - 55 EP - 58 PB - DVV Media Group CY - Hamburg ER -