TY - RPRT A1 - Weis, Fabian A1 - Schorn, Christian A1 - Anthrakidis, Anette A1 - Herrmann, Ulf T1 - Entwicklung eines kleinen Parabolrinnenkollektors mit Kunststoffkorpus zur Bereitstellung solarer Prozesswärme : Poly-P : Abschlussbericht Y1 - 2016 PB - Solar-Institut Jülich CY - Jülich ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Chico Caminos, Ricardo Alexander A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Göttsche, Joachim A1 - Röther, Sascha T1 - Science College Overbach - Innovatives Bildungszentrum in Jülich-Barmen T2 - 18. Internationale Passivhaustagung, Aachen, April 2014 N2 - Preprint der Autoren Y1 - 2014 ER - TY - CHAP A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard T1 - Fluid flow in porous ceramic multichannel crossflower filter modules Y1 - 2007 PB - COMSOL Inc. CY - Burlington, Mass. ER - TY - CHAP A1 - Vaeßen, Christiane A1 - Alexopoulos, Spiros A1 - Kluczka, Sven A1 - Sattler, Johannes Christoph A1 - Roeb, M. A1 - Neises, M. A1 - Abdellatif, T. T1 - Analyse der Verfahren zur solaren Methanolproduktion aus CO2 T2 - Forschung und Entwicklung für solarthermische Kraftwerke : 14. Kölner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus Jülich der FH Aachen : Kurzfassungen der Vorträge und Poster Y1 - 2011 SP - 2 S. PB - DLR CY - Köln ER - TY - CHAP A1 - Warerkar, S. A1 - Schmitz, S. A1 - Göttsche, Joachim A1 - Hoffschmidt, Bernhard A1 - Tamme, R. T1 - Performance analysis of an air-sand heat exchanger prototype for high-temperature storage T2 - EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1 Y1 - 2008 SN - 978-1-61782-228-5 SP - 2215 EP - 2222 PB - Sociedade Portuguesa De Energia Solar (SPES) CY - Lissabon ER - TY - CHAP A1 - Krüger, Dirk A1 - Anthrakidis, Anette A1 - Fischer, Stephan A1 - Lokurlu, Ahmet A1 - Walder, Markus A1 - Croy, Reiner A1 - Quaschning, Volker T1 - Experiences with solar steam supply for an industrial steam network in the P3 Project T2 - SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings Y1 - 2009 SN - 9783000287558 PB - Deutsches Zentrum f. Luft- u. Raumfahrt CY - Stuttgart ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER - TY - CHAP A1 - Göttsche, Joachim A1 - Hoffschmidt, Bernhard A1 - Schmitz, S. A1 - Sauerborn, Markus A1 - Rebholz, C. A1 - Iffland, D. A1 - Badstübner, R. A1 - Buck, R. A1 - Teufel, E. T1 - Test of a mini-mirror array for solar concentrating systems T2 - EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1 Y1 - 2008 SN - 978-1-61782-228-5 SP - 1242 EP - 1250 PB - Sociedade Portuguesa De Energia Solar (SPES) CY - Lissabon ER -