TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Razavi, A. A1 - Williams, O. A. A1 - Bijnens, N. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing JF - Biosensors and Bioelectronics. 24 (2009), H. 5 Y1 - 2009 SN - 0956-5663 N1 - Selected Papers from the Tenth World Congress on Biosensors Shangai, China, May 14-16, 2008 ; Zeitschrift früher u.d.T. : Biosensors SP - 1298 EP - 1304 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Field-effect devices for detecting cellular signals JF - Seminars in Cell & Developmental Biology. 20 (2009), H. 1 Y1 - 2009 SN - 1096-3634 SP - 41 EP - 48 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Kuwabara, Yohei A1 - Kanoh, Shin'ichiro A1 - Yoshinobu, Tatsuo A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Chemical image scanner based on FDM-LAPS JF - Sensors and Actuators B: Chemical. 137 (2009), H. 2 Y1 - 2009 SN - 0925-4005 SP - 533 EP - 538 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, K. A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - A high-density multi-point LAPS set-up using a VCSEL array and FPGA control JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 1483 EP - 1486 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Krämer, Melina A1 - Abouzar, Maryam H. A1 - Pita, Marcos A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 682 EP - 685 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Mimura, Shuhei A1 - Kanoh, Shin`ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Constant-phase-mode operation of the light-addressable potentiometric sensor JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 1487 EP - 1490 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Turek, M. A1 - Heiden, W. A1 - Riesen, A. A1 - Chhabda, T. A. A1 - Schubert, J. A1 - Krüger, P. A1 - Keusgen, M. T1 - Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6082 EP - 6088 PB - Elsevier CY - New York ER - TY - JOUR A1 - Bäcker, Matthias A1 - Beging, Stefan A1 - Biselli, Manfred A1 - Poghossian, Arshak A1 - Wang, J. A1 - Zang, Werner A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Concept for a solid-state multi-parameter sensor system for cell-culture monitoring JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6107 EP - 6112 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging JF - Sensors and Actuators B: Chemical N2 - Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2010.12.003 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 34 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Schusser, Sebastian A1 - Spalthahn, Heiko A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) can measure the concentration of one or several analytes at the sensor surface simultaneously in a spatially resolved manner. A modulated light pointer stimulates the semiconductor structure at the area of interest and a responding photocurrent can be read out. By simultaneous stimulation of several areas with light pointers of different modulation frequencies, the read out can be performed at the same time. With the new proposed controller electronic based on a field-programmable gate array (FPGA), it is possible to control the modulation frequencies, phase shifts, and light brightness of multiple light pointers independently and simultaneously. Thus, it is possible to investigate the frequency response of the sensor, and to examine the analyte concentration by the determination of the surface potential with the help of current/voltage curves and phase/voltage curves. Additionally, the ability to individually change the light intensities of each light pointer is used to perform signal correction. Y1 - 2011 U6 - http://dx.doi.org/10.1016/j.electacta.2011.03.012 SN - 0013-4686 VL - 56 IS - 26 SP - 9656 EP - 9660 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Pedraza, A. M. A1 - Gandhi, D. A1 - Ingebrandt, S. A1 - Moritz, W. A1 - Schöning, Michael Josef T1 - An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing JF - Biosensors and Bioelectronics. 26 (2011), H. 6 Y1 - 2011 SN - 0956-5663 SP - 3023 EP - 3028 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Li, Bin A1 - Spelthahn, Heiko A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Friedrich, Peter A1 - Kolstad, Jens A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 257 EP - 263 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Kanoh, Shin`ichiro A1 - Schöning, Michael Josef T1 - Phase-mode LAPS and its application to chemical imaging JF - Sensors and Actuators B: Chemical. 154 (2011), H. 1 Y1 - 2011 SN - 1873-3077 SP - 28 EP - 32 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Wagner, Holger A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of (bio-)chemical sensors on wafer level JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 169 EP - 173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-density multi-point LAPS set-up using a VCSEL array and FPGA control JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 124 EP - 128 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Mimura, Shuhei A1 - Kanoh, Shiníchiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Constant-phase-mode operation of the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical. 154 (2011), H. 2 Y1 - 2011 SN - 1873-3077 N1 - EUROSENSORS XXIII SP - 119 EP - 123 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Delle, L. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Zang, Werner A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Electrochemical sensor array for bioprocess monitoring JF - Electrochimica Acta (2011) Y1 - 2011 VL - 56 IS - 26 SP - 9673 EP - 9678 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huck, Christina A1 - Jolly, Christina A1 - Wagner, Patrick A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - One-chip integrated dual amperometric/field-effect sensor for the detection of dissolved hydrogen JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 1161 EP - 1164 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Shigihara, Noriko A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Microfluidic systems with free definable sensor spots by an integrated light-addressable potentiometric sensor JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 791 EP - 794 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bohrn, U. A1 - Stütz, E. A1 - Fuchs, K. A1 - Fleischer, M. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - Air Quality Monitoring using a Whole-Cell based Sensor System JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 1421 EP - 1424 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up JF - Procedia Engineering. 25 (2011) Y1 - 2011 SN - 1877-7058 N1 - EurosensorsXXV ; Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece SP - 346 EP - 349 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Malzahn, K. A1 - Abouzar, Maryam H. A1 - Mehndiratta, P. A1 - Katz, E. A1 - Schöning, Michael Josef T1 - Integration of biomolecular logic gates with field-effect transducers JF - Electrochimica Acta. 56 (2011), H. 26 Y1 - 2011 SN - 0013-4686 SP - 9661 EP - 9665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bohrn, U. A1 - Stütz, E. A1 - Fuchs, K. A1 - Fleischer, M. A1 - Schöning, Michael Josef A1 - Wagner, P. T1 - Monitoring of irritant gas using a whole-cell-based sensor system JF - Sensors and Actuators B: Chemical N2 - Cell-based sensors for the detection of gases have long been underrepresented, due to the cellular requirement of being cultured in a liquid environment. In this work we established a cell-based gas biosensor for the detection of toxic substances in air, by adapting a commercial sensor chip (Bionas®), previously used for the measurement of pollutants in liquids. Cells of the respiratory tract (A549, RPMI 2650, V79), which survive at a gas phase in a natural context, are used as biological receptors. The physiological cell parameters acidification, respiration and morphology are continuously monitored in parallel. Ammonia was used as a highly water-soluble model gas to test the feasibility of the sensor system. Infrared measurements confirmed the sufficiency of the medium draining method. This sensor system provides a basis for many sensor applications such as environmental monitoring, building technology and public security. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2012.05.088 SN - 0925-4005 VL - 175 SP - 208 EP - 217 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Kaneko, Kazumi A1 - Matsuo, Akira A1 - Wagner, Torsten A1 - Kanoh, Shiníchiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Miniaturized chemical imaging sensor system using an OLED display panel JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current–voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated. KW - LAPS KW - Light-addressable potentiometric sensor KW - Chemical imaging sensor KW - Organic light-emitting diode display Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.02.029 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 82 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Characterization of biodegradable polymers with capacitive field-effect sensors JF - Sensors and actuators B: Chemical N2 - In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance–voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor. KW - Impedance spectroscopy KW - C–V method KW - Real-time monitoring KW - Poly(d,l-lacticacid) KW - (Bio)degradation KW - Field-effect sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2012.07.099 SN - 0925-4005 N1 - Part of special issue "Selected Papers from the 14th International Meeting on Chemical Sensors" VL - 187 SP - 2 EP - 7 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef A1 - Keusgen, Michael T1 - Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry JF - Sensors and Actuators B: Chemical N2 - A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(%, v/v) in a H2O2 concentration range of 0%, v/v to 8%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes. KW - Sterilisation process KW - Hydrogen peroxide KW - Polyimide KW - Calorimetric gas sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.01.032 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 60 EP - 66 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bohrn, Ulrich A1 - Stütz, Evamaria A1 - Fleischer, Maximilian A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro JF - Biosensors and Bioelectronics. 40 (2013), H. 1 Y1 - 2013 SN - 0956-5663 SP - 393 EP - 400 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Iken, Heiko A1 - Kirsanov, D. A1 - Legin, A. A1 - Schöning, Michael Josef T1 - Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals JF - Procedia Engineering N2 - A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.148 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 322 EP - 325 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Ichimura, H. A1 - Wagner, Torsten A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Chemical Imaging of ion Diffusion in a Microfluidic Channel JF - Procedia Engineering N2 - The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.289 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 886 EP - 889 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Shigiahara, N. A1 - Miyamoto, K. A1 - Suzurikawa, J. A1 - Finger, F. A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Light-addressable Potentiometric Sensors and Light–addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility JF - Procedia Engineering N2 - This work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.290 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 890 EP - 893 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Weil, M. H. A1 - Bäcker, Matthias A1 - Mayer, D. A1 - Schöning, Michael Josef T1 - Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing JF - Procedia Engineering N2 - Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.proeng.2012.09.136 SN - 1877-7058 N1 - Part of special issue "26th European Conference on Solid-State Transducers, EUROSENSOR 2012" IS - 47 SP - 273 EP - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Combined amperometric/field-effect sensor for the detection of dissolved hydrogen JF - Sensors and actuators B: Chemical N2 - Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3% (v/v) with a slope of 198.4 ± 13.7 nA/% (v/v) and 14.9 ± 0.5 mV/% (v/v), respectively. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2012.10.050 SN - 0925-4005 N1 - Part of special issue "Selected Papers from the 14th International Meeting on Chemical Sensors" VL - 187 SP - 168 EP - 173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bohrn, Ulrich A1 - Mucha, Andreas A1 - Werner, Frederik A1 - Trattner, Barbara A1 - Bäcker, Matthias A1 - Krumbe, Christoph A1 - Schienle, Meinrad A1 - Stütz, Evamaria A1 - Schmitt-Landsiedel, Doris A1 - Fleischer, Maximilian A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - A critical comparison of cell-based sensor systems for the detection of Cr (VI) in aquatic environment JF - Sensors and actuators. B: Chemical Y1 - 2013 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - Vol. 182 SP - 58 EP - 65 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Menzel, S. A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Degradation of thin poly(lactic acid) films: characterization by capacitance-voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements JF - Electrochimica Acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) VL - Vol. 113 SP - 779 EP - 784 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Iken, Heiko A1 - Ahlborn, K. A1 - Gerlach, F. A1 - Vonau, W. A1 - Zander, W. A1 - Schubert, J. A1 - Schöning, Michael Josef T1 - Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors JF - Electrochimica acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) SP - Available online 30.8.2013 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bandodkar, Amay J. A1 - Molinnus, Denise A1 - Mirza, Omar A1 - Guinovart, Tomas A1 - Windmiller, Joshua R. A1 - Valdes-Ramirez, Gabriela A1 - Andrade, Francisco J. A1 - Schöning, Michael Josef A1 - Wang, Joseph T1 - Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring JF - Biosensors and bioelectronics N2 - This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.bios.2013.11.039 SN - 1873-4235 (E-Journal); 0956-5663 (Print) VL - 54 SP - 603 EP - 609 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hirayama, Yuji A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of enzymatic reaction in a microfluidic channel using chemical imaging sensor JF - Electrochimica acta Y1 - 2013 SN - 1873-3859 (E-Journal); 0013-4686 (Print) SP - Publ. online PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Chaudhuri, S. A1 - Zander, W. A1 - Schubert, J. A1 - Begoyan, V. K. A1 - Buniatyan, V. V. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate JF - Sensors and actuators. B: Chemical Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2014.02.103 SN - 1873-3077 (E-Journal); 0925-4005 (Print) IS - 198 SP - 102 EP - 109 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution JF - Sensors and actuators B: Chemical N2 - As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2014.08.016 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 204 SP - 659 EP - 665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Weiler, C. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes JF - Food control N2 - The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.foodcont.2014.07.063 SN - 1873-7129 (E-Journal); 0956-7135 (Print) VL - 47 SP - 615 EP - 622 ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Krischer, M. A1 - Leinhos, Marcel A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - An application of field-effect sensors for in-situ monitoring of degradation of biopolymers JF - Sensors and actuators B: Chemical N2 - The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte–insulator–semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al–p-Si–SiO2–Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13). Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.10.058 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 954 EP - 959 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution JF - Procedia Engineering N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent. KW - Light-addressable Potentiometric Sensor KW - novel photoexcitation method KW - tilted constant illumination KW - spatial resolution Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.369 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 456 EP - 459 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Seki, K. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination JF - Procedia Engineering N2 - The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.563 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 612 EP - 615 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies JF - Procedia Engineering N2 - Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride). KW - LAPS KW - lable-free detection KW - DNA hybridization KW - field-effect sensor Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.647 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 755 EP - 758 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Schubert, J. A1 - Zander, W. A1 - Begoyan, V. K. A1 - Buniatyan, V. V. A1 - Schöning, Michael Josef T1 - Chemical sensors based on a high-k perovskite oxide of barium strontium titanate JF - Procedia Engineering N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor. KW - barium strontium titanate KW - high-k material KW - contactless conductivity sensor KW - multi-functional material KW - hydrogen peroxide Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.258 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 28 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Krischer, M. A1 - Wenzel, L. A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor JF - Procedia Engineering N2 - A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers. KW - Field-effect sensor KW - enzymatic (bio)degradation KW - poly(d, l-lactic acid) KW - in-situ monitoring KW - impedance spectroscopy Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.689 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 1314 EP - 1317 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Murib, M. S. A1 - Yeap, W. S. A1 - Martens, D. A1 - Liu, X. A1 - Bienstman, P. A1 - Fahlman, M. A1 - Schöning, Michael Josef A1 - Michiels, L. A1 - Haenen, K. A1 - Serpengüzel, A. A1 - Wagner, Patrick T1 - Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands JF - Sensors and actuators A: Physical N2 - In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.sna.2014.11.024 SN - 1873-3069 (E-Journal); 0924-4247 (Print) VL - 222 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, S. A1 - Takenaga, S. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells JF - Procedia Engineering N2 - LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.647 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 384 EP - 387 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Siegert, Petra A1 - Willenberg, H. A1 - Poghossian, Arshak A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Detection of Adrenaline Based on Substrate Recycling Amplification JF - Procedia Engineering N2 - An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.708 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 540 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Krischer, M. A1 - Molin, D. G. M. A1 - Akker, N. M. S. van den A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Sensor System for in-situ and Real-time Monitoring of Polymer (bio) degradation JF - Procedia Engineering N2 - A sensor system for investigating (bio)degradationprocesses of polymers is presented. The system utilizes semiconductor field-effect sensors and is capable of monitoring the degradation process in-situ and in real-time. The degradation of the polymer poly(d,l-lactic acid) is exemplarily monitored in solutions with different pH value, pH-buffer solution containing the model enzyme lipase from Rhizomucormiehei and cell-culture medium containing supernatants from stimulated and non-stimulated THP-1-derived macrophages mimicking activation of the immune system. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.815 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 948 EP - 951 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Mariano, K. A1 - Keusgen, M. A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes JF - Procedia Engineering Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.702 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 532 EP - 535 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Bing, Yu A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor JF - Procedia Engineering N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.806 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 936 EP - 939 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer JF - Procedia Engineering N2 - Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.710 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 544 EP - 547 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamato, Ko-ichiro A1 - Sakakita, Sakura A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface JF - Electrochimica Acta N2 - The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.07.184 SN - 0013-4686 VL - 183 SP - 137 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials JF - Electrochimica Acta N2 - The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor’s thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.06.126 SN - 0013-4686 VL - 183 SP - 130 EP - 136 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Murib, M. S. A1 - Yeap, W. S. A1 - Eurlings, Y. A1 - Grinsven, B. van A1 - Boyen, H.-G. A1 - Conings, B. A1 - Michiels, L. A1 - Ameloot, M. A1 - Carleer, R. A1 - Warmer, J. A1 - Kaul, P. A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Ceuninck, W. de A1 - Wagner, P. T1 - Heat-transfer based characterization of DNA on synthetic sapphire chips JF - Sensors and Actuators B: Chemical N2 - In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.02.027 SN - 0925-4005 VL - 230 IS - 230 SP - 260 EP - 271 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Yu, Bing A1 - Isoda, Hiroko A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.04.018 SN - 0925-4005 VL - 236 SP - 965 EP - 969 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Schöning, Michael Josef T1 - Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical N2 - A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules. KW - Layer-by-layer adsorption KW - Poly(allylamine hydrochloride) KW - Label-free detection KW - DNA biosensor KW - LAPS KW - Field effect Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.02.004 SN - 0925-4005 IS - 229 SP - 506 EP - 512 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Koch, Claudia A1 - Eiben, Sabine A1 - Geiger, Fania A1 - Eber, Fabian A1 - Gliemann, Hartmut A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors JF - Sensors and Actuators B: Chemical N2 - The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2016.07.096 SN - 0925-4005 VL - 238 SP - 716 EP - 722 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Vornholt, Wolfgang A1 - Werner, Frederik A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-Ichiro A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening JF - Physics in medicine N2 - The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.phmed.2016.03.001 SN - 2352-4510 VL - 2016 IS - 1 SP - 2 EP - 7 ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Buniatyan, V. V. A1 - Wagner, Torsten A1 - Miamoto, K. A1 - Yoshinobu, T. A1 - Schöning, Michael Josef T1 - Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk JF - Sensor and Actuators B: Chemical N2 - The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.01.047 SN - 0925-4005 IS - 244 SP - 1071 EP - 1079 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Metzger-Boddien, C. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices T2 - Procedia Engineering N2 - A capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor modified with a positively charged weak polyelectrolyte of poly(allylamine hydrochloride) (PAH)/single-stranded probe DNA (ssDNA) bilayer has been used for a label-free electrostatic detection of pathogen-specific DNA amplification via polymerase chain reaction (PCR). The sensor is able to distinguish between positive and negative PCR solutions, to detect the existence of target DNA amplicons in PCR samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.proeng.2016.11.512 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 514 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Oberländer, Jan A1 - Mätzkow, M. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface functionalization for spore-based biosensors with organosilanes JF - Electrochimica Acta N2 - In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.04.157 SN - 0013-4686 VL - 241 SP - 237 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Figueroa-Miranda, Gabriela A1 - Feng, Lingyan A1 - Shiu, Simon Chi-Chin A1 - Dirkzwager, Roderick Marshall A1 - Cheung, Yee-Wai A1 - Tanner, Julian Alexander A1 - Schöning, Michael Josef A1 - Offenhäusser, Andreas A1 - Mayer, Dirk T1 - Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability JF - Sensor and Actuators B: Chemical N2 - Malaria infection remains a significant risk for much of the population of tropical and subtropical areas, particularly in developing countries. Therefore, it is of high importance to develop sensitive, accurate and inexpensive malaria diagnosis tests. Here, we present a novel aptamer-based electrochemical biosensor (aptasensor) for malaria detection by impedance spectroscopy, through the specific recognition between a highly discriminatory DNA aptamer and its target Plasmodium falciparum lactate dehydrogenase (PfLDH). Interestingly, due to the isoelectric point (pI) of PfLDH, the aptasensor response showed an adjustable detection range based on the different protein net-charge at variable pH environments. The specific aptamer recognition allows sensitive protein detection with an expanded detection range and a low detection limit, as well as a high specificity for PfLDH compared to analogous proteins. The specific feasibility of the aptasensor is further demonstrated by detection of the target PfLDH in human serum. Furthermore, the aptasensor can be easily regenerated and thus applied for multiple usages. The robustness, sensitivity, and reusability of the presented aptasensor make it a promising candidate for point-of-care diagnostic systems. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2017.07.117 SN - 0925-4005 VL - 255 IS - P1 SP - 235 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hayashi, Kosuke A1 - Sakamoto, Azuma A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance JF - Sensor and Actuators B: Chemical N2 - An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change. KW - Negative impedance convertor KW - Resonance-mode measurement KW - Chemical sensor KW - EIS capacitive sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.03.002 SN - 0925-4005 VL - 248 SP - 1006 EP - 1010 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Honarvarfard, Elham A1 - Gamella, Maria A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer JF - Applied Materials Today N2 - An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte–insulator–semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications. KW - Electrolyte–insulator–semiconductor KW - Capacitive field-effect KW - CNOT KW - XOR KW - Enzyme logic gate Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.apmt.2017.08.003 SN - 2352-9407 VL - 9 SP - 266 EP - 270 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oberländer, Jan A1 - Mayer, Marlena A1 - Greeff, Anton A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes JF - Biosensors and Bioelectronics N2 - In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2017.12.045 SN - 0956-5663 VL - 104 SP - 87 EP - 94 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, G. A1 - Käver, L. A1 - Willenberg, H.S. A1 - Kröger, J.-C. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling JF - Sensor and Actuators B: Chemical N2 - A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2018.05.136 SN - 0925-4005 VL - 272 SP - 21 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Rolka, David A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-effect biosensor using virus particles as scaffolds for enzyme immobilization JF - Biosensors and Bioelectronics N2 - A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.03.036 SN - 0956-5663 VL - 110 SP - 168 EP - 174 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Koichiro A1 - Seki, Kosuke A1 - Suto, Takeyuki A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers JF - Sensor and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2018.07.016 SN - 0925-4005 VL - 273 SP - 1328 EP - 1333 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Toward an immobilization method for spore-based biosensors in oxidative environment JF - Electrochimica Acta Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.electacta.2019.01.148 VL - 302 SP - 394 EP - 401 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Jessing, Max P. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2018.11.019 SN - 0956-5663 VL - 126 SP - 510 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cornelis, Peter A1 - Givanoudi, Stella A1 - Yongabi, Derick A1 - Iken, Heiko A1 - Duwé, Sam A1 - Deschaume, Olivier A1 - Robbens, Johan A1 - Dedecker, Peter A1 - Bartic, Carmen A1 - Wübbenhorst, Michael A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.04.026 SN - 0956-5663 VL - 136 SP - 97 EP - 105 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Geissler, Hanno A1 - Schöning, Michael Josef T1 - Rapid methods and sensors for milk quality monitoring and spoilage detection JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.04.040 SN - 0956-5663 VL - 140 IS - Article 111272 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Pilas, Johanna A1 - Guthmann, Eric A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels JF - Sensor and Actuators B: Chemical Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.snb.2019.02.086 SN - 0925-4005 VL - 288 SP - 579 EP - 585 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Wagner, Torsten A1 - Poghossian, Arshak A1 - Miyamoto, K.I. A1 - Werner, C.F. A1 - Krause, S. A1 - Yoshinobu, T. T1 - Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7 Y1 - 2018 SN - 9780128097397 SP - 295 EP - 308 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Baltes, Klaus A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide – numerical modeling and experimental results JF - International Journal of Heat and Mass Transfer N2 - Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results. Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118519 SN - 0017-9310 VL - 143 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS) JF - Physics in Medicine N2 - Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO–K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO–K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.phmed.2020.100030 SN - 2352-4510 VL - 10 IS - 100030 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Kipp, Carina Ronja A1 - Recker, Inga A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Gelissen, Melanie A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase JF - Journal of Biotechnology N2 - The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled. Y1 - 2020 SN - 2590-1559 U6 - http://dx.doi.org/10.1016/j.jbiotec.2020.09.016 VL - 202 IS - Vol. 324 SP - 61 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Takenaga, Shoko A1 - Taki, Hidenori A1 - Sawada, Kazuaki A1 - Schöning, Michael Josef T1 - Comparison of label-free ACh-imaging sensors based on CCD and LAPS JF - Sensors and Actuators B: Chemical (2012) N2 - Semiconductor-based chemical imaging sensors, like the light-addressable potentiometric sensor (LAPS) or the pH-imaging sensor based on a charge-coupled device (CCD), are becoming a powerful tool for label-free imaging of biological phenomena. We have proposed a polyion-based enzymatic membrane to develop an acetylcholine (ACh) imaging sensor for neural cell-activity observations. In this study, a CCD-type ACh-imaging sensor and a LAPS-type ACh-imaging sensor were fabricated and the prospect of both sensors was clarified by making a comparison of their basic characteristics. Y1 - 2013 SN - 0925-4005 VL - 177 SP - 745 EP - 752 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suco, Henri-Pierre A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef T1 - Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor JF - Food control N2 - In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2. KW - hydrogen peroxide KW - sterilisation KW - Bacillus atrophaeus KW - calorimetric gas sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.foodcont.2012.11.048 SN - 0956-7135 VL - 31 IS - 2 SP - 530 EP - 538 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Itabashi, Akinori A1 - Kosaka, Naoki A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - High-speed chemical imaging system based on front-side-illuminated LAPS JF - Sensors and actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of specific ions on the sensing surface. The conventional chemical imaging system based on the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality of light beams modulated at different frequencies can be employed to measure the ion concentrations simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However, the conventional measurement geometry of back-side illumination limited the bandwidth of the modulation frequency required for FDM measurement, because of the low-pass filtering characteristics of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH change at a rate of 70 frames per second. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.03.016 SN - 1873-3077 VL - 182 SP - 315 EP - 321 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Ichimura, Hiroki A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.04.057 SN - 1873-3077 (E-Journal); 0925-4005 (Print) N1 - Part of special issue "Selected Papers from the 26th European Conference on Solid-State Transducers" VL - 189 SP - 240 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Selmer, Thorsten A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111332 VL - 139 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Drinic, Aleksander A1 - Iken, Heiko A1 - Kröger, Nadja A1 - Zinser, Max A1 - Smeets, Ralf A1 - Köpf, Marius A1 - Kopp, Alexander A1 - Schöning, Michael Josef T1 - Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk JF - Biosensors and Bioelectronics Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.bios.2021.113204 SN - 0956-5663 VL - 183 IS - Art. 113204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing JF - Current Opinion in Electrochemistry Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100727 SN - 2451-9103 IS - In Press, Journal Pre-proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Givanoudi, Stella A1 - Cornelis, Peter A1 - Rasschaert, Geertrui A1 - Wackers, Gideon A1 - Iken, Heiko A1 - Rolka, David A1 - Yongabi, Derick A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source JF - Sensors and Actuators B: Chemical Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.snb.2021.129484 SN - 0925-4005 IS - In Press, Journal Pre-proof SP - Article 129484 PB - Elsevier CY - Amsterdam ER -