TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Jessing, Max P. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures JF - Biosensors and Bioelectronics Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2018.11.019 SN - 0956-5663 VL - 126 SP - 510 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Linder, Peter A1 - Beckler, Matthias A1 - Doerr, Leo A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Staat, Manfred A1 - Gossmann, Matthias T1 - A new in vitro tool to investigate cardiac contractility under physiological mechanical conditions JF - Journal of Pharmacological and Toxicological Methods Y1 - 2019 U6 - https://doi.org/10.1016/j.vascn.2019.05.162 SN - 1056-8719 VL - 99 IS - Article number 106595 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Savitskaya, I.S. A1 - Kistaubayeva, A.S. A1 - Ignatova, L.V. A1 - Digel, Ilya T1 - Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells JF - Heliyon Y1 - 2019 U6 - https://doi.org/10.1016/j.heliyon.2019.e02592 SN - 2405-8440 VL - 5 IS - 10 SP - Artikelnummer e02592 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rausch, Valentin A1 - Harbrecht, Andreas A1 - Kahmann, Stephanie Lucina A1 - Fenten, Thomas A1 - Jovanovic, Nebojsa A1 - Hackl, Michael A1 - Müller, Lars P. A1 - Staat, Manfred A1 - Wegmann, Kilian T1 - Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws JF - The Journal of Hand Surgery N2 - Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.04.010 SN - 0363-5023 VL - 45 IS - 10 SP - 987.e1 EP - 987.e8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - https://doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Roeth, A.A. A1 - Slabu, I. A1 - Kessler, A. A1 - Engelmann, Ulrich M. T1 - Local treatment of pancreatic cancer with magnetic nanoparticles JF - HPB Y1 - 2019 U6 - https://doi.org/10.1016/j.hpb.2019.10.959 SN - 1365-182X VL - 21 IS - Supplement 3 SP - S868 EP - S869 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - https://doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rausch, Valentin A1 - Kahmann, Stephanie Lucina A1 - Baltschun, Christoph A1 - Staat, Manfred A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study JF - The Journal of Hand Surgery N2 - Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.01.006 SN - 0363-5023 VL - 45 IS - 8 SP - 776.e1 EP - 776.e9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Grajewski, Matthias A1 - Köster, Michael A1 - Turek, Stefam T1 - Numerical analysis and implementational aspects of a new multilevel grid deformation method JF - Applied Numerical Mathematics N2 - Recently, we introduced and mathematically analysed a new method for grid deformation (Grajewski et al., 2009) [15] we call basic deformation method (BDM) here. It generalises the method proposed by Liao et al. (Bochev et al., 1996; Cai et al., 2004; Liao and Anderson, 1992) [4], [6], [20]. In this article, we employ the BDM as core of a new multilevel deformation method (MDM) which leads to vast improvements regarding robustness, accuracy and speed. We achieve this by splitting up the deformation process in a sequence of easier subproblems and by exploiting grid hierarchy. Being of optimal asymptotic complexity, we experience speed-ups up to a factor of 15 in our test cases compared to the BDM. This gives our MDM the potential for tackling large grids and time-dependent problems, where possibly the grid must be dynamically deformed once per time step according to the user's needs. Moreover, we elaborate on implementational aspects, in particular efficient grid searching, which is a key ingredient of the BDM. Y1 - 2010 U6 - https://doi.org/10.1016/j.apnum.2010.03.017 SN - 0168-9274 VL - 60 IS - 8 SP - 767 EP - 781 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Grajewski, Matthias A1 - Hron, Jaroslav A1 - Turek, Stefan T1 - Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals JF - Applied Numerical Mathematics N2 - After a short introduction of a new nonconforming linear finite element on quadrilaterals recently developed by Park, we derive a dual weighted residual-based a posteriori error estimator (in the sense of Becker and Rannacher) for this finite element. By computing a corresponding dual solution we estimate the error with respect to a given target error functional. The reliability and efficiency of this estimator is analyzed in several numerical experiments. Y1 - 2005 U6 - https://doi.org/10.1016/j.apnum.2004.09.016 SN - 0168-9274 VL - 54 IS - 3-4 SP - 504 EP - 518 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - https://doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Govorukha, Kristina A1 - Rübbelke, Dirk T1 - Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development JF - Applied Energy N2 - The steel industry in the European Union (EU), important for the economy as a whole, faces various challenges. These are inter alia volatile prices for relevant input factors, uncertainties concerning the regulation of CO₂-emissions and market shocks caused by the recently introduced additional import duties in the US, which is an important sales market. We examine primary and secondary effects of these challenges on the steel industry in the EU and their impacts on European and global level. Developing and using a suitable meta-model, we analyze the competitiveness of key steel producing countries with respect to floor prices depending on selected cost factors and draw conclusions on the impacts in the trade of steel on emissions, energy demand, on the involvement of developing countries in the value chain as well on the need for innovations to avoid relocations of production. Hence, our study contributes to the assessment of sustainable industrial development, which is aimed by the Sustainability Development Goal “Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation countries”. By applying information on country-specific Human Development Indexes (reflecting aspects of life expectancy, education, and per capita income), we show that relocating energy-intensive industries from the EU may not only increase global energy demand and CO₂-emissions, but may also be to the disadvantage of developing countries. Y1 - 2020 U6 - https://doi.org/10.1016/j.apenergy.2020.114633 SN - 0306-2619 VL - 264 IS - Article number: 114633 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Topçu, Murat A1 - Madabhushi, Gopal S.P. A1 - Staat, Manfred T1 - A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius JF - International Journal of Solids and Structures N2 - A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis Y1 - 2022 U6 - https://doi.org/10.1016/j.ijsolstr.2022.111464 SN - 0020-7683 VL - 239–240 IS - Art. No. 111464 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Defosse, Jerome A1 - Kleinschmidt, Joris A1 - Schmutz, Axel A1 - Loop, Torsten A1 - Staat, Manfred A1 - Gatzweiler, Karl-Heinz A1 - Wappler, Frank A1 - Schieren, Mark T1 - Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study JF - Journal of Cardiothoracic and Vascular Anesthesia KW - anaesthetic complications KW - dental trauma KW - difficult airway KW - double-lumen tube intubation KW - videolaryngoscopy Y1 - 2022 U6 - https://doi.org/10.1053/j.jvca.2022.02.017 SN - 1053-0770 VL - 36 IS - 8, Part B SP - 3021 EP - 3027 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Ortner, Marion A1 - Conradi, Anna A1 - Hacker, Patricia A1 - Hauser, Christine A1 - Günthner, Roman A1 - Moser, Michaela A1 - Muggenthaler, Claudia A1 - Diehl-Schmid, Janine A1 - Priller, Josef A1 - Schmaderer, Christoph A1 - Grimmer, Timo T1 - Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance JF - Neurobiology of Aging N2 - Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis. KW - Alzheimer's disease KW - Retinal vessel analysis KW - Vasomotions KW - Pulsations KW - Mild cognitive impairment Y1 - 2022 U6 - https://doi.org/10.1016/j.neurobiolaging.2022.08.012 SN - 0197-4580 VL - 120 SP - 117 EP - 127 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Engelmann, Ulrich M. A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data JF - Journal of Magnetism and Magnetic Materials N2 - Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as “colourization”) of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples’ total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization. Y1 - 2022 U6 - https://doi.org/10.1016/j.jmmm.2022.169969 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169969 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Pourshahidi, Mohammad Ali A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation JF - Journal of Magnetism and Magnetic Materials N2 - Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles’ magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing. Y1 - 2022 U6 - https://doi.org/10.1016/j.jmmm.2022.169965 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rübbelke, Dirk A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Zobel, Luzy T1 - Hydrogen-based steel production and global climate protection: An empirical analysis of the potential role of a European cross border adjustment mechanism JF - Journal of Cleaner Production N2 - The European Union's aim to become climate neutral by 2050 necessitates ambitious efforts to reduce carbon emissions. Large reductions can be attained particularly in energy intensive sectors like iron and steel. In order to prevent the relocation of such industries outside the EU in the course of tightening environmental regulations, the establishment of a climate club jointly with other large emitters and alternatively the unilateral implementation of an international cross-border carbon tax mechanism are proposed. This article focuses on the latter option choosing the steel sector as an example. In particular, we investigate the financial conditions under which a European cross border mechanism is capable to protect hydrogen-based steel production routes employed in Europe against more polluting competition from abroad. By using a floor price model, we assess the competitiveness of different steel production routes in selected countries. We evaluate the climate friendliness of steel production on the basis of specific GHG emissions. In addition, we utilize an input-output price model. It enables us to assess impacts of rising cost of steel production on commodities using steel as intermediates. Our results raise concerns that a cross-border tax mechanism will not suffice to bring about competitiveness of hydrogen-based steel production in Europe because the cost tends to remain higher than the cost of steel production in e.g. China. Steel is a classic example for a good used mainly as intermediate for other products. Therefore, a cross-border tax mechanism for steel will increase the price of products produced in the EU that require steel as an input. This can in turn adversely affect competitiveness of these sectors. Hence, the effects of higher steel costs on European exports should be borne in mind and could require the cross-border adjustment mechanism to also subsidize exports. Y1 - 2022 U6 - https://doi.org/10.1016/j.jclepro.2022.135040 SN - 0959-6526 VL - 380 IS - Part 2, Art. Nr.:135040 PB - Elsevier ER - TY - JOUR A1 - Baringhaus, Ludwig A1 - Gaigall, Daniel T1 - A goodness-of-fit test for the compound Poisson exponential model JF - Journal of Multivariate Analysis N2 - On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed. KW - Bootstrapping KW - Collective risk model Y1 - 2022 U6 - https://doi.org/10.1016/j.jmva.2022.105154 SN - 0047-259X SN - 1095-7243 VL - 195 IS - Article 105154 PB - Elsevier CY - Amsterdam ER -