TY - JOUR A1 - Droop, Philipp A1 - Chen, Shaohuang A1 - Radford, Melissa J. A1 - Paulßen, Elisabeth A1 - Gates, Byron D. A1 - Reilly, Raymond M. A1 - Radchenko, Valery A1 - Hoehr, Cornelia T1 - Synthesis of 197m/gHg labelled gold nanoparticles for targeted radionuclide therapy JF - Radiochimica Acta N2 - Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment). KW - 197m/gHg KW - Gold nanoparticle (AuNP) KW - Meitner-Auger-electron (MAE) KW - Targeted radionuclide therapy (TRT) Y1 - 2023 U6 - https://doi.org/10.1515/ract-2023-0144 SN - 2193-3405 VL - 111 IS - 10 SP - 773 EP - 779 PB - De Gruyter CY - Berlin [u.a.] ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Computational comparison of different textile implants to correct apical prolapse in females JF - Current Directions in Biomedical Engineering N2 - Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient’s anatomical defect, intended function after reconstruction and most importantly the surgeon’s preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0159 VL - 4 IS - 1 SP - 661 EP - 664 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Horbach, Andreas A1 - Staat, Manfred T1 - Optical strain measurement for the modeling of surgical meshes and their porosity JF - Current Directions in Biomedical Engineering N2 - The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes. Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0045 SN - 2364-5504 VL - Band 4 IS - 1 SP - 181 EP - 184 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Berndt, Heinz A1 - Gattner, Hans-Gregor A1 - Zahn, Helmut T1 - Semisynthetisches Des-A1-glycin-Schafinsulin JF - Biological Chemistry Y1 - 1975 U6 - https://doi.org/10.1515/bchm2.1975.356.2.1455 SN - 1437-4315 VL - 356 IS - 2 SP - 1469 EP - 1472 PB - De Gruyter CY - Berlin ER -