TY - CHAP A1 - Kotliar, Konstantin ED - Pallikaris, I. ED - Tsilimbaris, M. K. ED - Dastiridou, A. I. T1 - Ocular rigidity: clinical approach T2 - Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye N2 - The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications. KW - Coefficient of ocular rigidity KW - Eyeball KW - Corneo-scleral shell KW - Pressure-volume relationship KW - Differential tonometry Y1 - 2021 SN - 978-3-030-64422-2 U6 - http://dx.doi.org/10.1007/978-3-030-64422-2_2 SP - 15 EP - 43 PB - Springer CY - Cham ER - TY - JOUR A1 - Kuerten, David A1 - Kotliar, Konstantin A1 - Fuest, Matthias A1 - Walter, Peter A1 - Hollstein, Muriel A1 - Plange, Niklas ED - Neri, Piergiorgio T1 - Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study JF - International Ophthalmology N2 - Purpose Vascular risk factors and ocular perfusion are heatedly discussed in the pathogenesis of glaucoma. The retinal vessel analyzer (RVA, IMEDOS Systems, Germany) allows noninvasive measurement of retinal vessel regulation. Significant differences especially in the veins between healthy subjects and patients suffering from glaucoma were previously reported. In this pilot-study we investigated if localized vascular regulation is altered in glaucoma patients with altitudinal visual field defect asymmetry. Methods 15 eyes of 12 glaucoma patients with advanced altitudinal visual field defect asymmetry were included. The mean defect was calculated for each hemisphere separately (-20.99 ± 10.49 pro- found hemispheric visual field defect vs -7.36 ± 3.97 dB less profound hemisphere). After pupil dilation, RVA measurements of retinal arteries and veins were conducted using the standard protocol. The superior and inferior retinal vessel reactivity were measured consecutively in each eye. Results Significant differences were recorded in venous vessel constriction after flicker light stimulation and overall amplitude of the reaction (p \ 0.04 and p \ 0.02 respectively) in-between the hemispheres spheres. Vessel reaction was higher in the hemisphere corresponding to the more advanced visual field defect. Arterial diameters reacted similarly, failing to reach statistical significance. Conclusion Localized retinal vessel regulation is significantly altered in glaucoma patients with asymmetri altitudinal visual field defects. Veins supplying the hemisphere concordant to a less profound visual field defect show diminished diameter changes. Vascular dysregulation might be particularly important in early glaucoma stages prior to a significant visual field defect. KW - Glaucoma KW - Visual field asymmetry KW - Ocular blood flow KW - RVA KW - Vascular response Y1 - 2021 SN - 1573-2630 U6 - http://dx.doi.org/10.1007/s10792-021-01876-0 VL - 41 IS - 41 SP - 3109 EP - 3119 PB - Springer CY - Berlin ER - TY - CHAP A1 - Pfetsch, Marc E. A1 - Abele, Eberhard A1 - Altherr, Lena A1 - Bölling, Christian A1 - Brötz, Nicolas A1 - Dietrich, Ingo A1 - Gally, Tristan A1 - Geßner, Felix A1 - Groche, Peter A1 - Hoppe, Florian A1 - Kirchner, Eckhard A1 - Kloberdanz, Hermann A1 - Knoll, Maximilian A1 - Kolvenbach, Philip A1 - Kuttich-Meinlschmidt, Anja A1 - Leise, Philipp A1 - Lorenz, Ulf A1 - Matei, Alexander A1 - Molitor, Dirk A. A1 - Niessen, Pia A1 - Pelz, Peter F. A1 - Rexer, Manuel A1 - Schmitt, Andreas A1 - Schmitt, Johann M. A1 - Schulte, Fiona A1 - Ulbrich, Stefan A1 - Weigold, Matthias T1 - Strategies for mastering uncertainty T2 - Mastering uncertainty in mechanical engineering N2 - This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems. Y1 - 2021 SN - 978-3-030-78353-2 U6 - http://dx.doi.org/10.1007/978-3-030-78354-9_6 N1 - Part of the Springer Tracts in Mechanical Engineering book series (STME) SP - 365 EP - 456 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Schmitt, Andreas A1 - Leise, Philipp A1 - Meck, Tobias A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Pfetsch, Marc E. T1 - Validation of an optimized resilient water supply system T2 - Uncertainty in Mechanical Engineering N2 - Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems. KW - Optimization KW - Mixed-integer nonlinear programming KW - Water distribution system KW - Resilience KW - Validation Y1 - 2021 SN - 978-3-030-77255-0 SN - 978-3-030-77256-7 U6 - http://dx.doi.org/10.1007/978-3-030-77256-7_7 N1 - Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7–8, 2021 SP - 70 EP - 80 PB - Springer CY - Cham ER - TY - JOUR A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Reger, Vitali A1 - Kuhnhenne, Markus T1 - Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates JF - Geothermal Energy N2 - Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar fow and 60% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the fow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics. Y1 - 2021 U6 - http://dx.doi.org/10.1186/s40517-021-00201-3 SN - 2195-9706 N1 - Corresponding author: Tobias Blanke VL - 9 IS - Article number: 19 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Borchardt, Ralf A1 - Ritter, Philine A1 - Groß‑Hardt, Sascha A1 - Meyns, Bart A1 - Verbelen, Tom A1 - Steinseifer, Ulrich A1 - Kaufmann, Tim A. S. A1 - Engelmann, Ulrich M. T1 - Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input JF - Scientific Reports N2 - Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB. Y1 - 2021 U6 - http://dx.doi.org/10.1038/s41598-021-96397-2 SN - 2045-2322 VL - 11 IS - Art. No. 16800 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, M. A1 - Bil, C. T1 - Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization JF - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. KW - Parasitic drag KW - UAV KW - CFD KW - Aircraft sizing Y1 - 2021 U6 - http://dx.doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Falk Götten VL - 12 SP - 589 EP - 603 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hagenkamp, Markus A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Thermoelectric building temperature control: a potential assessment JF - International Journal of Energy and Environmental Engineering N2 - This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants. Y1 - 2021 U6 - http://dx.doi.org/10.1007/s40095-021-00424-x N1 - Corresponding author: Markus Hagenkamp VL - 13 SP - 241 EP - 254 PB - Springer CY - Berlin ER - TY - CHAP A1 - Altherr, Lena A1 - Leise, Philipp T1 - Resilience as a concept for mastering uncertainty T2 - Mastering Uncertainty in Mechanical Engineering Y1 - 2021 SN - 978-3-030-78353-2 U6 - http://dx.doi.org/10.1007/978-3-030-78354-9 N1 - Unterkapitel 6.3.1 des Kapitels "Strategies for Mastering Uncertainty" SP - 412 EP - 417 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pfetsch, Marc E. A1 - Schmitt, Andreas T1 - Optimal design of resilient technical systems on the example of water supply systems T2 - Mastering Uncertainty in Mechanical Engineering Y1 - 2021 SN - 978-3-030-78356-3 N1 - Unterkapitel des Kapitels "Strategies for Mastering Uncertainty" SP - 429 EP - 433 PB - Springer CY - Cham ER -