TY - CHAP A1 - Kallweit, Stephan A1 - Gottschalk, Michael A1 - Walenta, Robert T1 - ROS based safety concept for collaborative robots in industrial applications T2 - Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371) N2 - The production and assembly of customized products increases the demand for flexible automation systems. One approach is to remove the safety fences that separate human and industrial robot to combine their skills. This collaboration possesses a certain risk for the human co-worker, leading to numerous safety concepts to protect him. The human needs to be monitored and tracked by a safety system using different sensors. The proposed system consists of a RGBD camera for surveillance of the common working area, an array of optical distance sensors to compensate shadowing effects of the RGBD camera and a laser range finder to detect the co-worker when approaching the work cell. The software for collision detection, path planning, robot control and predicting the behaviour of the co-worker is based on the Robot Operating System (ROS). A first prototype of the work cell shows that with advanced algorithms from the field of mobile robotics a very flexible safety concept can be realized: the robot not simply stops its movement when detecting a collision, but plans and executes an alternative path around the obstacle. KW - Collaborative robot KW - Human-Robot interaction KW - Safety concept KW - Workspace monitoring KW - Path planning Y1 - 2016 SN - 978-3-319-21289-0 (Print) ; 978-3-319-21290-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-3-319-21290-6_3 SP - 27 EP - 35 PB - Springer CY - Cham ER - TY - CHAP A1 - Engemann, Heiko A1 - Wiesen, Patrick A1 - Kallweit, Stephan A1 - Deshpande, Harshavardhan A1 - Schleupen, Josef T1 - Autonomous mobile manipulation using ROS T2 - Advances in Service and Industrial Robotics Y1 - 2018 SN - 978-3-319-61276-8 U6 - http://dx.doi.org/10.1007/978-3-319-61276-8_43 N1 - International Conference on Robotics in Alpe-Adria Danube Region RAAD 2017; Mechanisms and Machince Science book series, Vol 49. SP - 389 EP - 401 PB - Springer CY - Cham ER - TY - JOUR A1 - Kunkel, Maximilian Hugo A1 - Gebhardt, Andreas A1 - Mpofu, Khumbaulani A1 - Kallweit, Stephan T1 - Statistical assessment of mechanical properties of selective laser melted specimens of stainless steel JF - The International Journal of Advanced Manufacturing Technology N2 - The rail business is challenged by long product life cycles and a broad spectrum of assembly groups and single parts. When spare part obsolescence occurs, quick solutions are needed. A reproduction of obsolete parts is often connected to long waiting times and minimum lot quantities that need to be purchased and stored. Spare part storage is therefore challenged by growing stocks, bound capital and issues of part ageing. A possible solution could be a virtual storage of spare parts which will be 3D printed through additive manufacturing technologies in case of sudden demand. As mechanical properties of additive manufactured parts are neither guaranteed by machine manufacturers nor by service providers, the utilization of this relatively young technology is impeded and research is required to address these issues. This paper presents an examination of mechanical properties of specimens manufactured from stainless steel through the selective laser melting (SLM) process. The specimens were produced in multiple batches. This paper interrogates the question if the test results follow a normal distribution pattern and if mechanical property predictions can be made. The results will be put opposite existing threshold values provided as the industrial standard. Furthermore, probability predictions will be made in order to examine the potential of the SLM process to maintain state-of-the-art mechanical property requirements. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s00170-018-2040-8 SN - 0268-3768 VL - 98 IS - 5-8 SP - 1409 EP - 1431 PB - Springer CY - London ER -