TY - JOUR A1 - Rodrigues, Raul T. A1 - Morais, Paulo V. A1 - Nordi, Cristina S. F. A1 - Schöning, Michael Josef A1 - Siqueira Jr., José R. A1 - Caseli, Luciano T1 - Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films JF - Langmuir N2 - Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air–water interface were investigated by surface pressure–area isotherms, surface potential–area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte–insulator–semiconductor (EIS) devices, through the Langmuir–Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV–vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme–lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance–voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications. Y1 - 2018 U6 - https://doi.org/10.1021/acs.langmuir.7b04317 SN - 1520-5827 VL - 34 IS - 9 SP - 3082 EP - 3093 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Scholl, Fabio A1 - Morais, Paulo A1 - Gabriel, Rayla A1 - Schöning, Michael Josef A1 - Siqueira, Jose Roberto, Jr. A1 - Caseli, Luciano T1 - Carbon nanotubes arranged as smart interfaces in lipid Langmuir-Blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications JF - Applied Materials & Interfaces N2 - In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir–Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air–water interface was investigated by surface pressure–area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV–vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte–insulator–semiconductor (EIS) sensor device. The presence of CNTs in the enzyme–lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications. Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b08095 SN - 1944-8252 VL - 9 IS - 36 SP - 31054 EP - 31066 PB - ACS CY - Washington ER - TY - JOUR A1 - Bronder, Thomas A1 - Jessing, Max P. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors JF - Analytical Chemistry N2 - Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results. Y1 - 2018 U6 - https://doi.org/10.1021/acs.analchem.8b01807 SN - 0003-2700 VL - 90 IS - 12 SP - 7747 EP - 7753 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Manea, Marilena A1 - Leurs, Ulrike A1 - Orban, Erika A1 - Baranyai, Zsuzsa A1 - Öhlschläger, Peter A1 - Marquardt, Andreas A1 - Schulcz, Akos A1 - Tejeda, Miguel T1 - Enhanced Enzymatic Stability and Antitumor Activity of Daunorubicin-GnRH-III Bioconjugates Modified in Position 4 JF - Bioconjugate Chemistry Y1 - 2011 SN - 1520-4812 VL - 22 IS - 7 SP - 1320 EP - 1329 PB - ACS CY - Washington, DC ER - TY - JOUR A1 - Grinsven, Bart van A1 - Bon, Natalie vanden A1 - Strauven, Hannelore A1 - Grieten, Lars A1 - Murib, Mohammed A1 - Jiménez Monroy, Kathia L. A1 - Janssens, Stoffel D. A1 - Haenen, Ken A1 - Schöning, Michael Josef A1 - Vermeeren, Veronique A1 - Ameloot, Marcel A1 - Michiels, Luc A1 - Thoelen, Ronald A1 - Ceuninck, Ward de A1 - Wagner, Patrick T1 - Heat-Transfer Resistance at Solid-Liquid Interfaces: A Tool for The Detection of Single Nucleotide Polymorphisms in DNA. JF - ACS Nano N2 - In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. Y1 - 2012 U6 - https://doi.org/10.1021/nn300147e SN - 1936-086X VL - 6 IS - 3 SP - 2712 EP - 2721 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Riedel, Marc A1 - Kartchemnik, Julia A1 - Schöning, Michael Josef A1 - Lisdat, Fred T1 - Impedimetric DNA detection – steps forward to sensorial application JF - Analytical chemistry N2 - This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away. Y1 - 2014 U6 - https://doi.org/10.1021/ac501800q SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 (2014) IS - 15 SP - 7867 EP - 7874 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Schöning, Michael Josef T1 - Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection JF - Analytical chemistry N2 - The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor’s surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance–voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform. Y1 - 2014 U6 - https://doi.org/10.1021/ac500458s SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 IS - 11 SP - 5370 EP - 5375 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Burger, René A1 - Rumpf, Jessica A1 - Do, Xuan Tung A1 - Monakhova, Yulia A1 - Diehl, Bernd W. K. A1 - Rehahn, Matthias A1 - Schulze, Margit T1 - Is NMR combined with multivariate regression applicable for the molecular weight determination of randomly cross-linked polymers such as lignin? JF - ACS Omega N2 - The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7–9 and 14–16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography. Y1 - 2021 U6 - https://doi.org/10.1021/acsomega.1c03574 SN - 2470-1343 VL - 6 IS - 44 SP - 29516 EP - 29524 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Lindner, Simon A1 - Burger, René A1 - Rutledge, Douglas N. A1 - Do, Xuan Tung A1 - Rumpf, Jessica A1 - Diehl, Bernd W. K. A1 - Schulze, Margit A1 - Monakhova, Yulia T1 - Is the calibration transfer of multivariate calibration models between high- and low-field NMR instruments possible? A case study of lignin molecular weight JF - Analytical chemistry N2 - Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize. Y1 - 2022 SN - 1520-6882 U6 - https://doi.org/10.1021/acs.analchem.1c05125 VL - 94 IS - 9 SP - 3997 EP - 4004 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Everaers, Ralf A1 - Karimi-Varzaneh, Hossein Ali A1 - Fleck, Franz A1 - Hojdis, Nils A1 - Svaneborg, Carsten T1 - Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale JF - Macromolecules N2 - The Kremer–Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers. Y1 - 2020 U6 - https://doi.org/10.1021/acs.macromol.9b02428 SN - 1520-5835 VL - 53 IS - 6 SP - 1901 EP - 1916 PB - ACS Publications CY - Washington, DC ER -