TY - JOUR A1 - Bohrn, Ulrich A1 - Stütz, Evamaria A1 - Fleischer, Maximilian A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1345 EP - 1350 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Werner, Frederik A1 - Krumbe, Christoph A1 - Schumacher, Katharina A1 - Groebel, Simone A1 - Spelthahn, Heiko A1 - Stellberg, Michael A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1340 EP - 1344 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Suso, Henri-Pierre A1 - Kupyna, Andriy A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1235 EP - 1240 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, Hanno A1 - Flörke, Rudolf A1 - Näther, Niko A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2) JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1351 EP - 1356 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hennemann, Jörg A1 - Kohl, Claus-Dieter A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Schöning, Michael Josef T1 - Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations JF - physica status solidi (a) N2 - We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9% v/v at an operating temperature of 450 °C. Y1 - 2013 U6 - https://doi.org/10.1002/pssa.201200775 SN - 1862-6319 VL - 210 IS - 5 SP - 859 EP - 863 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Schneider, Benno A1 - Geissler, Hanno A1 - Gompel, Matthias van A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range JF - physica status solidi (a) N2 - In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range. Y1 - 2013 SN - 1862-6319 VL - 210 IS - 5 SP - 898 EP - 904 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Hanssen, Henner A1 - Eberhardt, Karla A1 - Vilser, Walthard A1 - Schmaderer, Christoph A1 - Halle, Martin A1 - Heemann, Uwe A1 - Baumann, M. T1 - Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects JF - Microcirculation Y1 - 2013 SN - 1549-8719 N1 - Accepted Article (Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future.) PB - Wiley CY - Malden ER - TY - JOUR A1 - Jahnke, Siegfried A1 - Menzel, Marion I. A1 - Dusschoten, Dagmar van A1 - Roeb, Gerhard W. A1 - Bühler, Jonas A1 - Minwuyelet, Senay A1 - Blümler, Peter A1 - Temperton, Vicky M. A1 - Hombach, Thomas A1 - Streun, Matthias A1 - Beer, Simone A1 - Khodaverdi, Maryam A1 - Ziemons, Karl A1 - Coenen, Heinz H. A1 - Schurr, Ulrich T1 - Combined MRI–PET dissects dynamic changes in plant structures and functions JF - The Plant Journal N2 - Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI–PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance. Y1 - 2009 SN - 1365-313X VL - 59 IS - 4 SP - 634 EP - 644 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suso, Henri-Pierre A1 - Rysstad, Gunnar A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes JF - Physica status solidi (a) N2 - A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. KW - calorimetric gas sensor;hydrogen peroxide;wireless sensor system Y1 - 2013 U6 - https://doi.org/10.1002/pssa.201200920 SN - 1862-6319 VL - 210 IS - 5 SP - 877 EP - 883 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Murib, M. S. A1 - Grinsven, B. van A1 - Grieten, L. A1 - Janssens, S. D. A1 - Vermeeren, V. A1 - Eersels, K. A1 - Broeders, J. A1 - Ameloot, M. A1 - Michiels, L. A1 - Ceuninck, W. De A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates JF - Physica Status Solidi (A). Vol. 210 (2013), iss. 5 Y1 - 2013 SN - 0031-8965 SP - 911 EP - 917 PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Arida, Hassan A1 - Turek, Monika A1 - Rolka, David A1 - Schöning, Michael Josef T1 - A Novel Thin-Film Copper Array Based on an Organic/Inorganic Sensor Hybrid: Microfabrication, Potentiometric Characterization, and Flow-Injection Analysis Application JF - Electroanalysis. 21 (2009), H. 10 Y1 - 2009 SN - 1040-0397 SP - 1145 EP - 1151 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Moreno i Codinachs, L. A1 - Birkenstock, C. A1 - Garma, T. A1 - Zierold, R. A1 - Bachmann, J. A1 - Nielsch, K. A1 - Schöning, Michael Josef A1 - Fontcuberta i Morral, A. T1 - A micron-sized nanoporous multifunction sensing device JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 435 EP - 441 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Näther, Niko A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schöning, Michael Josef T1 - Investigation of different catalytically active and passive materials for realising a hydrogen peroxide gas sensor JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 449 EP - 454 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Lanzl, Ines M. A1 - Seidova, Seid-Fatima A1 - Maier, Mathias A1 - Schmidt-Trucksäss, Arno A1 - Halle, Martin A1 - Kotliar, Konstantin T1 - Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection JF - Acta Ophthalmologica Y1 - 2011 SN - 1755-3768 VL - 89 IS - 5 SP - 472 EP - 479 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Jiminez German, Salvador A1 - Behbahani, Mehdi A1 - Miettinen, Susanna A1 - Grijpma, Dirk W. A1 - Haimi, Suvi P. T1 - Proliferation and differentiation of adipose stem cells towards smooth muscle cells on poly(trimethylene carbonate) membranes JF - Macromolecular symposia Y1 - 2013 SN - 0258-0322 VL - Vol. 334 IS - Iss. 1 SP - 133 EP - 142 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Oberländer, Jan A1 - Bromm, Alexander A1 - Wendeler, Luisa A1 - Iken, Heiko A1 - Palomar Duran, Marlena A1 - Greeff, Anton A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines JF - Physica status solidi (a) N2 - Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431900 SN - 1862-6319 VL - 212 IS - 6 SP - 1299 EP - 1305 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Pieper, Martin T1 - Simulating the electromagnetic‐thermal treatment of thin aluminium layers for adhesion improvement JF - Physica status solidi (a) N2 - A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431893 SN - 1862-6319 VL - Vol. 212 IS - 6 SP - 1234 EP - 1241 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Pilas, Johanna A1 - Iken, Heiko A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes JF - Physica status solidi (a) N2 - An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431894 SN - 1862-6319 VL - 212 IS - 6 SP - 1306 EP - 1312 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Kharoubi, A. A1 - Schmidt-Trucksäß, A. A1 - Halle, M. A1 - Lanzl, I. T1 - Does internal longitudinal microstructure of retinal veins change with age in medically healthy persons? JF - Acta Ophthalmologica Y1 - 2009 SN - 1600-0420 (E-Journal); 1755-3768 (E-Journal); 0001-639X (Print); 1395-3907 (Print); 1755-375X (Print) VL - Vol. 87 IS - Suppl. S244 SP - 0 PB - Wiley CY - Weinheim ER -