TY - JOUR A1 - Morais, Paulo V. A1 - Silva, Anielle C. A. A1 - Dantas, Noelio O. A1 - Schöning, Michael Josef A1 - Siqueira, José R., Jr. T1 - Hybrid Layer‐by‐Layer Film of Polyelectrolytes‐Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte‐Insulator‐Semiconductor Devices JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900044 VL - 216 IS - 1900044 SP - 1 EP - 9 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Iken, Heiko A1 - Bronder, Thomas A1 - Goretzki, Alexander A1 - Kriesel, Jana A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900114 SN - 1862-6319 VL - 216 IS - 12 SP - 1 EP - 8 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips JF - Electroanalysis N2 - The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor. Y1 - 2017 U6 - http://dx.doi.org/10.1002/elan.201700208 SN - 1521-4109 VL - 29 IS - 8 SP - 1840 EP - 1849 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Beging, Stefan A1 - Leinhos, Marcel A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431891 SN - 1862-6319 VL - 212 IS - 6 SP - 1353 EP - 1358 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Oberländer, Jan A1 - Bromm, Alexander A1 - Wendeler, Luisa A1 - Iken, Heiko A1 - Palomar Duran, Marlena A1 - Greeff, Anton A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines JF - Physica status solidi (a) N2 - Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431900 SN - 1862-6319 VL - 212 IS - 6 SP - 1299 EP - 1305 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Kramer, Friederike A1 - Begoyan, Vardges K. A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - Multi-parameter sensing using high-k oxide of barium strontium titanate JF - Physica status solidi (a) N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431911 SN - 1862-6319 VL - 212 IS - 6 SP - 1259 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Pieper, Martin T1 - Simulating the electromagnetic‐thermal treatment of thin aluminium layers for adhesion improvement JF - Physica status solidi (a) N2 - A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431893 SN - 1862-6319 VL - Vol. 212 IS - 6 SP - 1234 EP - 1241 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Pilas, Johanna A1 - Iken, Heiko A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes JF - Physica status solidi (a) N2 - An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431894 SN - 1862-6319 VL - 212 IS - 6 SP - 1306 EP - 1312 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Iken, Heiko A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Concept for a biomolecular logic chip with an integrated sensor and actuator function JF - Physica status solidi (a) N2 - A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431913 SN - 1862-6319 VL - 212 IS - 6 SP - 1382 EP - 1388 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Delle, Lotta E. A1 - Huck, Christina A1 - Bäcker, Matthias A1 - Müller, Frank A1 - Grandthyll, Samuel A1 - Jacobs, Karin A1 - Lilischkis, Rainer A1 - Vu, Xuan T. A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Thoelen, Roland A1 - Weil, Maryam A1 - Ingebrandt, Sven T1 - Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431863 SN - 1862-6319 VL - 212 IS - 6 SP - 1327 EP - 1334 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Multi-Parametererfassung mit siliziumbasiertem Sensorchip: Aus Drei mach Eins JF - GIT Labor-Fachzeitschrift Y1 - 2014 SN - 0016-3538 IS - 2 SP - 28 EP - 30 PB - Wiley ER - TY - JOUR A1 - Murib, M. S. A1 - Grinsven, B. van A1 - Grieten, L. A1 - Janssens, S. D. A1 - Vermeeren, V. A1 - Eersels, K. A1 - Broeders, J. A1 - Ameloot, M. A1 - Michiels, L. A1 - Ceuninck, W. De A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Electronic monitoring of chemical DNA denaturation on nanocrystalline diamond electrodes with different molarities and flow rates JF - Physica Status Solidi (A). Vol. 210 (2013), iss. 5 Y1 - 2013 SN - 0031-8965 SP - 911 EP - 917 PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Reisert, Steffen A1 - Schneider, Benno A1 - Geissler, Hanno A1 - Gompel, Matthias van A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range JF - physica status solidi (a) N2 - In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range. Y1 - 2013 SN - 1862-6319 VL - 210 IS - 5 SP - 898 EP - 904 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suso, Henri-Pierre A1 - Rysstad, Gunnar A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes JF - Physica status solidi (a) N2 - A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. KW - calorimetric gas sensor;hydrogen peroxide;wireless sensor system Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200920 SN - 1862-6319 VL - 210 IS - 5 SP - 877 EP - 883 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hennemann, Jörg A1 - Kohl, Claus-Dieter A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Schöning, Michael Josef T1 - Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations JF - physica status solidi (a) N2 - We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9% v/v at an operating temperature of 450 °C. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200775 SN - 1862-6319 VL - 210 IS - 5 SP - 859 EP - 863 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers JF - Physica Status Solidi (A) N2 - Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200941 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 905 EP - 910 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Bohrn, Ulrich A1 - Stütz, Evamaria A1 - Fleischer, Maximilian A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1345 EP - 1350 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Pouyeshman, S. A1 - Schnitzler, Thomas A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Biselli, Manfred A1 - Schöning, Michael Josef T1 - A silicon-based multi-sensor chip for monitoring of fermentation processes JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1364 EP - 1369 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Werner, Frederik A1 - Krumbe, Christoph A1 - Schumacher, Katharina A1 - Groebel, Simone A1 - Spelthahn, Heiko A1 - Stellberg, Michael A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1340 EP - 1344 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Suso, Henri-Pierre A1 - Kupyna, Andriy A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1235 EP - 1240 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, Hanno A1 - Flörke, Rudolf A1 - Näther, Niko A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2) JF - Physica status solidi (a) : applications and material science. 208 (2011), H. 6 Y1 - 2011 SN - 1862-6319 SP - 1351 EP - 1356 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Arida, Hassan A1 - Turek, Monika A1 - Rolka, David A1 - Schöning, Michael Josef T1 - A Novel Thin-Film Copper Array Based on an Organic/Inorganic Sensor Hybrid: Microfabrication, Potentiometric Characterization, and Flow-Injection Analysis Application JF - Electroanalysis. 21 (2009), H. 10 Y1 - 2009 SN - 1040-0397 SP - 1145 EP - 1151 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Moreno i Codinachs, L. A1 - Birkenstock, C. A1 - Garma, T. A1 - Zierold, R. A1 - Bachmann, J. A1 - Nielsch, K. A1 - Schöning, Michael Josef A1 - Fontcuberta i Morral, A. T1 - A micron-sized nanoporous multifunction sensing device JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 435 EP - 441 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Näther, Niko A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schöning, Michael Josef T1 - Investigation of different catalytically active and passive materials for realising a hydrogen peroxide gas sensor JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 449 EP - 454 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Siqueira, José R. Jr. A1 - Abouzar, Maryam H. A1 - Bäcker, Matthias A1 - Zucolotto, Valtencir A1 - Poghossian, Arshak A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 462 EP - 467 PB - Wiley CY - Weinheim ER -