TY - JOUR A1 - Colombo, Daniele A1 - Drira, Slah A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis JF - International Journal for Numerical Methods in Engineering N2 - Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element. KW - distorted element KW - ES-FEM KW - FS-FEM KW - non-simplex S-FEM elements KW - S-FEM Y1 - 2022 U6 - http://dx.doi.org/10.1002/nme.7126 SN - 1097-0207 VL - 124 IS - 2 SP - 402 EP - 433 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suso, Henri-Pierre A1 - Rysstad, Gunnar A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes JF - Physica status solidi (a) N2 - A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. KW - calorimetric gas sensor;hydrogen peroxide;wireless sensor system Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200920 SN - 1862-6319 VL - 210 IS - 5 SP - 877 EP - 883 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hennemann, Jörg A1 - Kohl, Claus-Dieter A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Schöning, Michael Josef T1 - Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations JF - physica status solidi (a) N2 - We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9% v/v at an operating temperature of 450 °C. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200775 SN - 1862-6319 VL - 210 IS - 5 SP - 859 EP - 863 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers JF - Physica Status Solidi (A) N2 - Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200941 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 905 EP - 910 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Iken, Heiko A1 - Bronder, Thomas A1 - Goretzki, Alexander A1 - Kriesel, Jana A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900114 SN - 1862-6319 VL - 216 IS - 12 SP - 1 EP - 8 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Streese, Lukas A1 - Kotliar, Konstantin A1 - Deiseroth, Arne A1 - Infanger, Denis A1 - Gugleta, Konstantin A1 - Schmaderer, Christoph A1 - Hanssen, Henner T1 - Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial JF - Scandinavian Journal of Medicine and Science in Sports N2 - The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1%, post: 3.0 ± 2.2%, P = .018) and AFarea (pre: 32.6 ± 28.4%*s, post: 37.7 ± 30.6%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8%, post: 2.9 ± 1.8%, P = .254; AFarea, pre: 41.6 ± 28.5%*s, post: 37.8 ± 27.0%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk. Y1 - 2020 U6 - http://dx.doi.org/10.1111/sms.13560 SN - 1600-0838 VL - 30 IS - 2 SP - 272 EP - 280 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Nguyen-Xuan, H. A1 - Rabczuk, T. A1 - Nguyen-Thoi, T. A1 - Tran, Thanh Ngoc A1 - Nguyen-Thanh, N. T1 - Computation of limit and shakedown loads using a node-based smoothed finite element method JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. Y1 - 2011 U6 - http://dx.doi.org/10.1002/nme.3317 SN - 1097-0207 VL - 90 IS - 3 SP - 287 EP - 310 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Neidlin, Michael A1 - Engelmann, Ulrich M. A1 - Kaufmann, Tim A. S. A1 - Steinseifer, Ulrich A1 - Heilmann, Torsten T1 - Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk‐Reduced Placement: an In Silico Proof‐of‐Concept JF - Artificial Organs Y1 - 2021 U6 - http://dx.doi.org/10.1111/aor.13964 SN - 1525-1594 IS - Accepted Article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Angermann, Susanne A1 - Günthner, Roman A1 - Hanssen, Henner A1 - Lorenz, Georg A1 - Braunisch, Matthias C. A1 - Steubl, Dominik A1 - Matschkal, Julia A1 - Kemmner, Stephan A1 - Hausinger, Renate A1 - Block, Zenonas A1 - Haller, Bernhard A1 - Heemann, Uwe A1 - Kotliar, Konstantin A1 - Grimmer, Timo A1 - Schmaderer, Christoph T1 - Cognitive impairment and microvascular function in end-stage renal disease JF - International Journal of Methods in Psychiatric Research (MPR) N2 - Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention. KW - cerebral small vessel disease KW - cognitive impairment KW - dialysis KW - retinal vessels Y1 - 2022 U6 - http://dx.doi.org/10.1002/mpr.1909 SN - 1049-8931 (Print) SN - 1557-0657 (Online) VL - 31 IS - 2 SP - 1 EP - 10 PB - Wiley ER -